Strong motion seismology from space Proof of concept

Jean-Paul Ampuero Nadia Lapusta Remi Michel (visiting) **Surendra Somala** (Caltech Seismolab)

Some open questions about earthquake dynamics

- Earthquake source complexity: geometry and evolution of the rupture front, broad-scale heterogeneity, variability of rupture speed
- Pulse/crack rupture styles: how short are earthquake rise times?
- **Rupture speed**: how usual are supershear ruptures?
- Fault rheology: which weakening mechanisms are dominant in real faults?
 Is rupture dominated by rheology or by heterogeneities?

Source imaging today: Intrinsic limitations

- Source inverse problem: retrieve the space-time distribution of fault slip from seismological, geodetic, field data
- Due to our poor knowledge of the propagation media at small scales, seismic data is usually exploited in a limited frequency band (< 0.5 Hz)
- Data is sparse: the inverse problem is ill-posed (severe non uniqueness), sensitive to regularization and data selection. Different teams often obtain very different models of the same earthquake.
- Low resolution: models suffer from limited spatial resolution (> 10 km).
 - Little detail about the friction law can be retrieved
 - Resulting slip models are notoriously heterogeneous but how much of that spatial variability is real?

SIV first blind test results (Mai et al)

Rationale for specs of remote imaging system

- Amplitude sensitivity on ground velocity = few cm/s, dictated by technical capabilities → Strong-motion, near-field seismology
- Wide field of view, several 100km, to capture a M7.8 earthquake on the San Andreas Fault and its largest aftershocks
- Temporal sampling at 1Hz, the *nominal* frequency limit of current inversions
- Spatial sampling at 100m spacing = 1/5 minimum wavelength at 1Hz considering S wave speeds ~500 m/s at shallow depth

Expected outcomes:

- robust source imaging down to few km spatial resolution on the fault
- distinguish between sub-shear and super-shear rupture speed
- distinguish real spatio-temporal complexity of earthquake rupture
- assess the quality of and revisit source images of past earthquakes

Note: Pushing to 5-10Hz might yield new constraints on fault rheology (friction)

M7 earthquake scenario setup

Kaneko, Lapusta and Ampuero (2008): Spectral Element modeling of faults governed by rate-and-state friction

Scenario ground motions **Fault-parallel ground velocity** Map of velocity in x-direction (m/s) at 0.5 sec 40 0.5 > 20 -0.5 10 -30 -20 10 20 30 40 -40 -10 \times (km)

Space-based earthquake seismology - J.-P. Ampuero

Sub-shear vs. super-shear rupture speed

Subshear scenario

Horizontal Slip-Rate (m/s) at t = 0.0 sec (w) 40 -10 -20 -10 0 10 20 30 Distance along strike (km)

Supershear scenario

Sub-shear vs. super-shear rupture

Direct estimate of surface slip velocity from satellite optical images

Sub-shear

Super-shear

Space-based earthquake seismology - J.-P.

KISS workshop - March 2010

Ampuero

Imaging rupture complexity Scenario with a second asperity

- J.-P.

Source inversion

- **Task**: infer spatio-temporal fault slip distribution from recorded ground motions
- Goal: quantify the improvements on source imaging provided by the satellite-based system
- Challenge:
 - The satellite system would provide unprecedentedly dense sampling of ground motions: several million seismometers!
 - Classical source inversion approaches typically work with <20 stations and do not scale up to an immensely larger (× 10⁵) seismic network, several Terabytes of data, >10⁴ unknown fault parameters.
 - → Source inversion codes are just not ready for that.
- Alternative: We tried a more direct path, time-reversal imaging

Time-reversal source imaging: principles and limitations

Time-reversed

propagation

wave

Forward wave propagation

Principle and properties:

- Exploit the time-reversal symmetry of the wave equation and the reciprocity principle
- Recorded motions are time-reversed and applied as surface force sources. Waves back propagated (by simulation) focus on the original source.
- The spatial resolution of focusing is dictated by the sampling wavelength (= S wave speed / sampling frequency)
- Has been applied before for huge earthquakes (Sumatra 2004) with teleseismic data. Never been attempted with near-field data.

Source imaging of the 2004 Sumatra earthquake by time reversal of teleseismic hi-f data (Hinet array, Japan) (Hjorleifsdottir, 2007)

Space-based earthquake seismology - J.-P. Ampuero

Time-reversal source imaging: principles and limitations

Time-reversed wave propagation

Limitations:

- Focusing requires recordings over a surface that completely surrounds the source. We have only recordings at the Earth's surface.
- \rightarrow partial compensation (at low frequencies) based on teleseismic data
- Waves defocus right after focusing: serious interference problem when imaging the multiple delayed sources that constitute an extended source.
 - → requires **iterative** time-reversal imaging, perhaps absorbing conditions

Forward scenario

Horizontal Slip-Rate (m/s) at t = 0.0 sec 20 30 Distance along strike (km) Rupture-time (s) from Time-Reversal simulation -5 0 5 Distance along strike (km)

Time-reversal modeling

Space-based earthquake seismology - J.-P.

KISS workshop - March 2010

Ampuero

Summary

What can we learn about earthquake physics from 1Hz seismic waves adequate sampled by a satellite system?

From direct observation:

- Distinguish between sub-shear and super-shear ruptures
- Complexity of surface rupture

From source inversion (expected): Complexity of sub-surface rupture at kilometric scale

In progress:

- iterative time-reversal source imaging, jointly with teleseismic data
- assess perturbations by site effects, scattering in the shallow crust

Not discussed: potential for seismic tomography and for quantification of site effects + exploiting smaller earthquakes → improved tomography → revisit past earthquakes

Time-reversal simulations

Space-based earthquake seismology - J.-P. Ampuero