

Goal 1. Interpretation and prediction of hillslope evolution

Landscape evolution reflects:

- tectonic forcing
- rock type
- climate & biology

$$\frac{\partial z}{\partial t} = -\nabla \cdot q_s + U$$
 Tectonics

Dietrich et al., 2003

- Most landscapes erode at rates less than 0.5 mm yr⁻¹
- Most erosion rate estimates are derived from river sediments (i.e., catchment-averaged)
- To test/calibrate erosion models, we often rely on landscape morphology (e.g., lidar)

Morphologic change after 500,000 yrs...

$$q_s = KS$$

S = local gradient

Morphologic change after 500,000 yrs...

- 1) Steady-state hillslopes?
- 2) Continuum approximation of transport?

$$q_s = \frac{K(h)S}{1 - \left(S/S_c\right)^2}$$

h = soil depth (m)S = local gradient

Goal 2: Infer rock uplift and erosion from morphology

Von Blanckenburg et al., 2004

Montgomery & Brandon, 2002

Spatial variation of hilltop convexity and landscape adjustment

Spatial variation of hilltop convexity and landscape adjustment

Goal 3: Measurement of stochastic hillslope processes

What is the magnitude-frequency relationship of disturbances that drive soil production and transport?

Goal 4: **The evolution of the critical zone** (top of canopy to base of weathering front...30m?)

- What is the biotic role?
- How do topography and the critical zone co-evolve?

Biotic signature from airborne lidar

- The land surface becomes increasingly rough at short length scales
- Pit and mound features generated by tree turnover dominate small length scales

Ground-penetrating radar for mapping soil depth and root penetration into bedrock

Goal 5: Landslides and landscape evolution

- 1) What controls the size of landslides and their contribution to landscape evolution?
- 2) Why do some slides fail catastrophically and others deform slowly with seasonality?

Landslide mapping inventories: Do landslide statistics yield mechanistic information?

Eel River (Mackey, PhD. 2009)

- LiDAR and historical air photos
- 122 active earthflow features (7.3% of study area)
- Earthflow sediment yield to channels: 0.53 mm yr⁻¹
- Denudation from suspended sediment records: ~0.9 mm yr⁻¹

InSAR and photo-derived displacements

- InSAR (stack of 17 infs): Feb 13, 2007 Feb 16, 2008
- Tree vectors (Mackey, 2009): air photos 1964 2006
- InSAR velocities (horizontally projected) are 20% slower
- Satellite orientation relative to terrain and slope deformation

Dynamics using automated photo rectification, coregistration, and subpixel correlation

COSI-Corr (Leprince et al., Eos, 2008)

Pervasive slow-moving slides selfregulate and do not fail catastrophically

Shear-zone dilatancy may permit negative pore pressure-shear feedbacks and thus allow for slow, steady motion

- Can we image this feedback?
- Is there a limit to shear zone dilatancy?

ment (mm)

-10

Hilley et al., Science, 2004

lide

(m)

Iverson, JGR, 2005

Slide

Hillslopes:

Airborne lidar and radar enables us to:

Summary

Test models and make predictions, quantify process signatures (including life!), and infer tectonic forcing

Geomorphic implication #1: Sediment production at Boulder Crk

- Sediment flux through transport zone exceeds 4100 m³ yr⁻¹
- Basin lowering rate ≥ 1.6 mm yr⁻¹
- Gullies appear to facilitate delivery of earthflow-mobilized sediment to the channel network

Roering et al. (GRL, 2009)

Hillslope evolution and nonlinear slope-dependent transport

 $S = \text{hillslope gradient}, \nabla z$

h = soil depth (m)

 $K = \text{transport coefficient } (L^2)$

 S_c = critical gradient

Physically-based formulation:

Roering et al., 1999

sediment flux, **q**s

gradient, S S_c

 K varies with energy expended by disturbances in the soil mantle...biological connection?

