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Goal 1. Interpretation and prediction of hillslope evolution

Landscape evolution reflects:
e tectonic forcing
* rock type
* climate & biology
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e Most landscapes erode at rates less than 0.5 mm yr?

e Most erosion rate estimates are derived from river sediments (i.e., catchment-
averaged)

* To test/calibrate erosion models, we often rely on landscape morphology (e.g., lidar)



Morphologic change after 500,000 yrs... q. = KS S =local gradient
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Morphologic ch fter 500,000 yrs...
orphologic change after yrs _ K(h)S h = soil depth (m)

S =local gradient

1) Steady-state hillslopes? 2
. pes? 1-(S/S,)
2) Continuum approximation of transport? c
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Process-scale investigations:

Knickpoint evolution in rivers and landscape
response



Spatial variation of hilltop convexity and landscape adjustment
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Spatial variation of hilltop convexity and landscape adjustment

Upstream of Knickpoint: _ _
Convexity = -0.02 to -0.06 Downstream of Knickpoint:
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Goal 3: Measurement of stochastic hillslope processes

What is the magnitude-frequency relationship of disturbances that drive soil production and transport?

. e 5 . ; : it
Post-fire response L IR V5%

<N \

: 2 \3 s @8 Jackson and Roering, 2005, 2009

. S Badh o)\
§ -
=P
: A & i
LA - ’

| Gabilan Mesa, Calif. (Perron et al., 2006; 2009) Oregon Coast Range (Roering, 1999; 2008)

e T e . W Ll TR 9




Goal 4: The evolution of the critical zone
(top of canopy to base of weathering front...30m?)

e What is the biotic role?

e How do topography and the critical
zone co-evolve?

-

soil transport & production

_soll

A

slope
stabilization

PR

bedrock

Particle trajectory due to
erosion and exhumation



Biotic signature from airborne lidar

¢ The land surface becomes increasingly rough at short length scales

e Pit and mound features generated by tree turnover dominate small length scales
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Ground-penetrating radar for mapping soil depth and roo
penetration into bedrock

Douglas fir stumps
dbh=23cm
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Soil depth (cm)

Spectral power
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Goal 5: Landslides and landscape evolution
1) What controls the size of landslides and their contribution to landscape evolution?

2) Why do some slides fail catastrophically and others deform slowly with seasonality?
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Landslide mapping inventories:
Do landslide statistics yield Sl

mechanistic information?
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Cumulative probability of slide number

Eel River (Mackey, PhD. 2009)

e LiDAR and historical air photos

e 122 active earthflow features
(7.3% of study area)

e Earthflow sediment yield to
channels: 0.53 mm yr?

Denudation from suspended
sediment records: ~0.9 mm yr!
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InNSAR using ALOS in
Northern California
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. INSAR (stack of 17 infs): Feb 13, 2007 — Feb 16, 2008
InSAR and photo-derived Tree vectors (Mackey, 2009): air photos 1964 — 2006

displacements InSAR velocities (horizontally projected) are 20% slower
Satellite orientation relative to terrain and slope deformation




Dynamics using automated photo rectification,
coregistration, and subpixel correlation
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Pervasive slow-moving slides self-
regulate and do not fail
catastrophically

Shear-zone dilatancy may permit
negative pore pressure-shear
feedbacks and thus allow for slow,
steady motion

= Can we image this feedback?
= |s there a limit to shear zone
dilatancy?
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Hillslopes:
Airborne lidar and radar enables us to:

Test models and make predictions, quantify process signatures
(including life!), and infer tectonic forcing

Summary

4

slides and landscapes:

n' AR and air photos enable us to:

Next:

* Monitor transport

rocesses | . . .
P Document regional slide inventories
eEstimate denudation rates

eTest mechanistic models

* Image subsurface
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Geomorphic implication #1:
Sediment production at Boulder Crk

e Sediment flux through transport zone
exceeds 4100 m3 yr

e Basin lowering rate > 1.6 mm yr!

e Gullies appear to facilitate delivery of

earthflow-mobilized sediment to the

channel network
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Hillslope evol an inear s.I_ope-d;er'endent transport
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S = hillslope gradient, Vz

h = soil depth (m) -
K = transport coefficient (L2
S.= critical gradient
Physically-based formulation:
Roering et al., 1999
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