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A multi-scale approach to INSAR
time series analysis

M. Simons, E. Hetland, P. Muse, Y. N. Lin & C. DiCaprio
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A geophysical perspective on deformation tomography

Long Valley Caldera, California

Examples:
Northern Volcanic Zone, Iceland
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Motivation

Assume that in the future (Sentinel, DESDynl) we will have:
Frequent repeats (short AT)
Good orbits with small baselines
Ubiquitous high coherence

Challenge for the future:
How to deal with O(103) interferograms
How to use C, - Invert all pixels simultaneously?

1000 igrams x 1000 x 1000 pixels = 1 billion data
Computational tractability

Approach (MINnTS = Multi-scale INSAR Time Series):
1. Time domain: A generalized physical parameterization (GPS-like)
2. Space domain: Wavelets — use all data simultaneously

Note: Currently only applied to unwrapped data (we want this to change)



How to deal with holes from
decorrelation & unwrapping in
individual scenes?

We want to avoid the union of all
holes in final time series.

Interpolate in space?
Interpolate in time?

Our approach: Space & time
simultaneously (tomography-like)
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MInTS Recipe

1. Interpolate unwrapping holes in each interferogram where
needed (temporary)

2. Wavelet decomposition of each interferogram

For later weighting purposes, track relative extent to
which each wavelet coefficient is associated with actual
data versus interpolated data

3. Time series analysis on wavelet coefficients

Physical parameterization + splines for unknown signals
- all constrained by weighted wavelet coefficients of

observed interferograms

4. Recombine to get total deformation history
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Begin with a time domain synthetic for a “single pixel”
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INSAR time series: SBAS-pure (2 examples)

Goal: Continuous displacement record

Assumption:  Constant V, between image acquisitions dates
Approach: Minimize V,

Method: SVD

Secular + Seasonal + Transient + Noise

Secular + Seasonal + Transient + Noise

+ EQ + relaxation
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Issues
- Temporal parameterization controlled by dates of image
* No explicit separation of processes contributing to the phase
- Inherently pixel-by-pixel approach (computational restriction)

- Ignores aprioriinformation and data/model covariances
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MInTS | -
Generalized temporal description
(geophysical intuition)
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Observation equation for LOS deformation:

- ok postseismic-like processes
Z H(t —T7) [1 — exp (_E)} e (i.e., one sided)
: T;

1

€S
sin(w;t) cos(w;t)+ ]— periodic deformation (seasonal)
1€S

generalized functions:

P
» __4b il B-splines, uniform (symmetric)
Z ” (t t _|_ Z m t and non-uniform (asymmetric,

localized)



Typical splines (current examples too coarse in time...)
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Regularization parameter, A, on B-splines chosen by cross-validation and is
currently assumed constant for all wavelet scales and positions.



Observation equation

AP{{&(Q) = p(Q2,tg) — p(2ta) +;3a6(ﬂ) + Nas(8)

interferometric orbital errors other “noise”
measurement (igram specific) (pixel & igram
specific)

p(Q, tﬁ) £y ,O(Q,ta) 3 [tﬁ The toz] UP(Q) + [FP(Q’tﬂ) kS Fp(Qvta)]

orbital errors approximated by

Raﬁ(ﬂf,y) :aaﬁ+baﬂ$+caﬁy+daﬂ$y+...

solve via (constrained) least squares — (generalized implementation):

p
|Gigmy —wil> + ) AellHEmE — hE||?

k=1
optional constraints: e
P 7P g Use cross-validation to
e minimum soln. applied individually on Hatarr e
* flat soln. each model parameter,

* smooth soln. or function
e Sparse soln.



Demo time series — single pixel:

Time series is parameterized physically - not with image acquisition
times - disconnected sets do not require any additional parameters
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Now the spatial problem
Neighboring pixels are highly correlated

Hanssen, 2001
Emardson et al., 2003

10 1 01 1 02 1 03 Lohman & Simons, 2005

Distance (km)

Challenge: Coupling all pixels together is expensive



MInTS: Spatial parameterization

Farras or Meyer 2D Wavelets

3 wavelets per scale (lossless)
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Wavelet parameterization permits implicit inclusion of C,

Cq=Aexp(L/L,) Corresponding wavelets
L.,=25km coefficients nearly uncorrelated
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C, = WC ;W' where W is the wavelet transform matrix

Note: wavelet approach has no master pixel — inherently relative
displacements at a given scale



Long Valley:

velocity (cmiyear)
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Example: Iceland Northern Volcanic Zone — Instantaneous Velocity
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Example: Iceland Northern Volcanic Zone — Instantaneous Velocity (nonlinear)
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Example: Iceland Northern Volcanic Zone — Instantaneous Velocity
linear rate 6/1993 6/1995 6/1997

100
200[ 5|}
300
400
500
500
700
800




MINTS

* Allows all scenes to be used even when isolated holes are present
* Interpolates holes in time & space — “deformation tomography”

* Implicitly includes expected data covariance

* Physically parameterized but with ability to “discover” transients

* Flexible choice of regularization on different components of the
parameterization (smoothness, sparsity,...)

» Computationally efficient

* Potential for incorporation of other data (e.g., GPS) and N,E,U
parameterization given enough LOS diversity.

 Potential for integrated phase unwrapping



