Model-Based Integrated Health Management

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Engineering Resilient Space Systems

Keck Institute for Space Studies 2 August 2012

Erv Baumann

Integrated Health Management Lead Advanced Programs & Technologies Northrop Grumman Aerospace Systems

IHM Operational Elements

(for purposes of this presentation IHM = PHM = ISHM = IVHM)

NORTHROP GRUMMAN

Objective of Model-Based Diagnostic Design Analysis -

- Use Model-Based Testability Analysis Tools to Assess Fault Coverage vs. Reqmts
- Reduce Replication in Related FMECA and Testability Analysis Efforts
- Support IETM Generation and Informed Maintenance Activities
- Enable Effective Discrepancy Analysis and Design Updates During Sustainment
- Reduce Time Required to Develop Variants of Baseline Vehicle Design

Model-Based System Design Enables

Model-Based System Design and Life Cycle Logistics Loop

- Inner "Sustainment Triangle (Loop)" is Executed Many Times Within a Typical Product's Life Cycle
- Shared System Model Facilitates Timely Life Cycle Support, Block Upgrades, Variant Development, & Configuration Mgmt

Model-Based System Development and Sustainment Loop

Current Design Analysis Methods Repeat Similar Thought Processes for Related Products

Model-Based Diagnostic Design & Analysis Provides an Opportunity to Reduce the Replication of Effort in Deriving Related Products

Model-Based Process Reduces

By Investing in the Development of Diagnostic Models for Systems, One Can Transition to a More Timely and Cost-Effective Automated Testability Analysis and Report Generation Process

For our purposes a model must support the representation of:

- Physical Features and Properties of Components

 Static/Fixed Part (e.g., the number and type of I/O ports)
- Functional, Operational, Behavioral Description of Components

 Dynamic/Procedural/Executable Part (e.g., the function performed)
- Connectivity between Components
 - Functional Dependencies and Fault Propagation Paths
- A Graphic Depiction of the Model That is Understandable by Users (Typically Engineers and Maintenance Technicians)
 – Enables Efficient Model Input, Explanation, and Human Interaction

NORTHROP GRUMMAN

Example: Landing Gear Diagnostic Model

Diagnostic Models Are Developed Graphically and Define WRA Functional Relationships, Failure Modes, and Tests. Fault Detection (FD%), Fault Isolation (FI%), and Other Diagnostic Performance Metrics Are Automatically Calculated.

Input & Output Data Items

Input Data Items:

To Modeler:

- Engineering Schematics
- Functional Descriptions
- Interface Control Documents
- Sub-contractor Engineering Documents

Directly into Model:

- Reliability & Maintainability Data
- FMECA Reports
- Output Data Items:
 - Diagnostic Model
 - Testability Analysis Reports
 - FMECA Update Reports
 - Diagnostic Logic / Fault Isolation Sequences
 - S1000D Compliant IETM Data Files

Example of Model-Based Testability Analysis of Design Alternatives

Testability Analysis of Landing Gear Design With and Without Sensor Fault Disambiguation

Landing Gear Testability Performance Metric	Before Adding Sensor Fault Test	After Adding Sensor Fault Test		
Fault Detection Coverage (FD%)	99.9%	99.9%		
Fault Isolation Coverage (FI%)	65.3%	88.3%	23.0%	Improvement
False Removal%				
(The % of all unit removals that could				
result from ambiguous fault isolation)	39.3%	18.6%	20.7%	Improvement

Model-Based Analysis Allows Designers to Assess the Impact of Design Options on Testability and Maintenance Efficiency

Integrated Health Management (IHM), an Enabler GRUMMAN for Integrated Operations

Scenario: Detection & Multi-Level Response to Degraded Control Surface Actuation

In-Flight Detection & Mgmt of Degraded Actuation System

- 1. Flight group embarks with all systems operational.
- 2. Nearing the target area, IHM detects degradation of control surface actuation and maneuverability in one of the key payload-carrying aircraft in the flight group.
- 3. IHM provides health & status diagnostic & prognostic information required by adaptive flight control system.
- 4. Control system reconfigures to maintain control and manage Remaining Useful Life (RUL) of the actuators.
- 5. Automated Mission Mgmt software automatically changes flight group formation and tactics to reduce vulnerability of degraded aircraft for remainder of mission.

Managing Complexity in Aerospace System

Aerospace Programs Require More Than 5 Times Longer to Perform Comparable Development & Sustainment Tasks than the Auto & Electronics Industries

Several Key Reasons for "The Gap":

- 1. Inconsistent Aerospace Application of Systems Engineering Tools and Processes
- 2. Differences in Major Aerospace Systems Acquisition and Regulatory Processes
- 3. Lack of Model-Based Design, Analysis, Production, and/or Operations Tools

THE VALUE OF PERFORMANCE.

