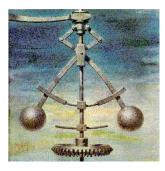


Control Theory and Methods

Richard M. Murray Control & Dynamical Systems and Bioengineering California Institute of Technology


Engineering Resilient Space Systems: Leveraging Novel System Engineering Techniques and Software Architectures 30 July 2012

Goals

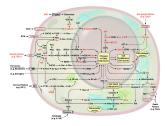
- Provide an overview of the key principles, concepts and tools from control theory that might be relevant for engineering resilient systems
 - "Classical" control frequency domain, "inner loop" methods
 - Optimization-based control exploit online computation, comms
- Describe current trends and recent work in control theory based on work at Caltech and JPL

What is "Control Theory"?

Control in an Information Rich World R. Murray (ed), SIAM, 2003 [Google: "CDS Panel Report"]

Traditional view

- Use of feedback for stability, performance, robustness
- DUFF: dynamics, uncertainty, feedback, feedforward


Emerging view

- Collection of tools and techniques for analyzing, designing and implementing complex systems
- Combination of dynamics, interconnection (fbk/ffd), communications, computing and software
- Successful implementation of complex systems requires combining traditional controls with CS view

Key principles

- Feedback as a tool for *managing uncertainty*
- Design of dynamics through integration of sensing, actuation and computation
- Component/subsystem modularity (through feedback)

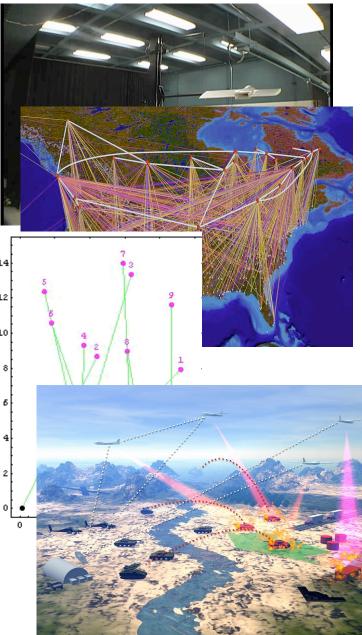
"Principles and methods used to design engineering systems that maintain desirable performance by automatically adapting to changes in the environment"

Some Important Trends in Control in the Last Decade

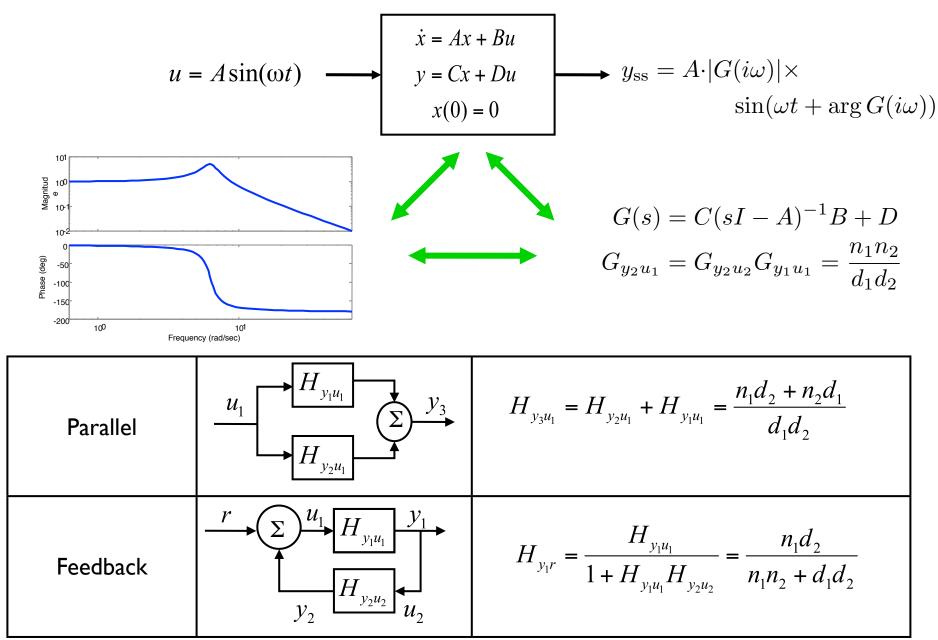
(Online) Optimization-based control

- Increased use of online optimization (MPC/RHC)
- Use knowledge of (current) constraints & environment to allow performance and adaptability

Layering and architectures

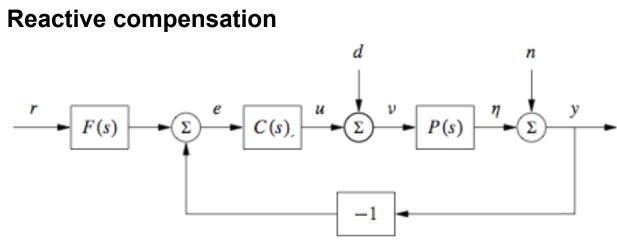

- Command & control at multiple levels of abstraction
- Modularity in product families via layers

Formal methods for analysis, design and synthesis

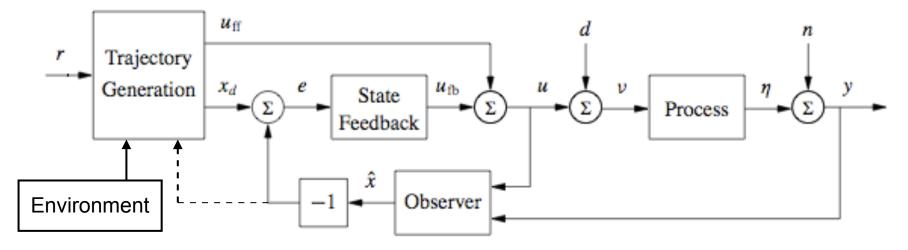

- Combinations of continuous and discrete systems
- Formal methods from computer science, adapted for ¹⁰ cyberphysical systems

$\textbf{Components} \rightarrow \textbf{Systems} \rightarrow \textbf{Enterprise}$

- Movement of control techniques from "inner loop" to "outer loop" to entire enterprise (eg, supply chains)
- Use of *systematic* modeling, analysis and synthesis techniques at all levels
- Integration of "software" with "controls"


Frequency Response, Transfer Functions, Block Diagrams

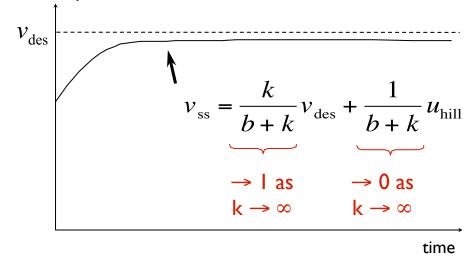
KISS, 30 Jul 2012

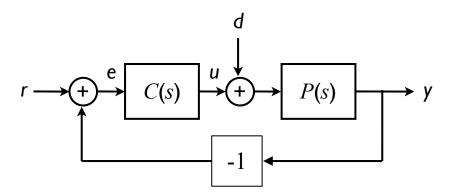

Richard M. Murray, Caltech CDS/BE

Design Patterns for Control Systems

Predictive compensation

- Reference input shaping
- Feedback on output error
- Compensator dynamics shape closed loop response
- Uncertainty in process dynamics + external disturbances and noise
- Goals: stability, performance (tracking), robustness


• Explicit computation of trajectories given a model of the process and environment


Example #1: Cruise Control

$$\begin{split} m\dot{v} &= -bv + u_{\text{engine}} + d_{\text{hill}} \\ u_{\text{engine}} &= k(\underbrace{v_{\text{des}}}_{r} - \underbrace{v}_{y}) \end{split}$$

velocity

Stability/performance

- Steady state velocity approaches desired velocity as k → ∞
- Smooth response; no overshoot or oscillations

Disturbance rejection

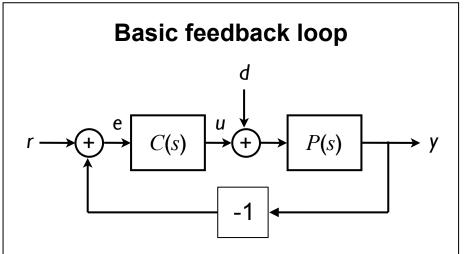
 Effect of disturbances (hills) approaches zero as k → ∞

Robustness

 None of these results depend on the specific values of b, m, or k for k sufficiently large

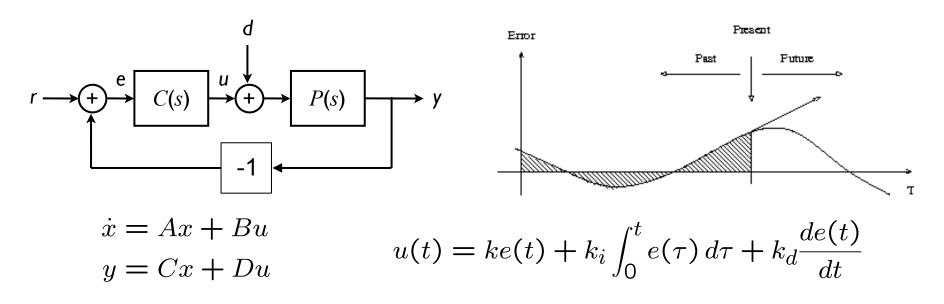
Control Tools: 1940-2000

Modeling


- Input/output representations for subsystems + interconnection rules
- System identification theory and algorithms
- Theory and algorithms for reduced order modeling + model reduction

Analysis

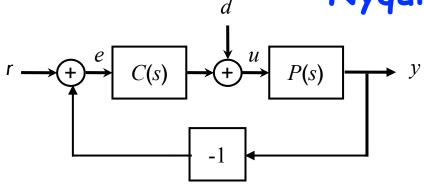
- Stability of feedback systems, including robustness "margins"
- Performance of input/output systems (disturbance rejection, robustness)


Synthesis

- Constructive tools for design of feedback systems
- Constructive tools for signal processing and estimation

- Plant, *P* = process being regulated
- Reference, r = external input (often encodes the desired setpoint)
- Disturbances, *d* = external environment
- Error, e = reference actual
- Input, *u* = actuation command
- Feedback, *C* = closed loop correction
- Uncertainty: plant dynamics, sensor noise, environmental disturbances

Canonical Feedback Example: PID Control


Three term controller

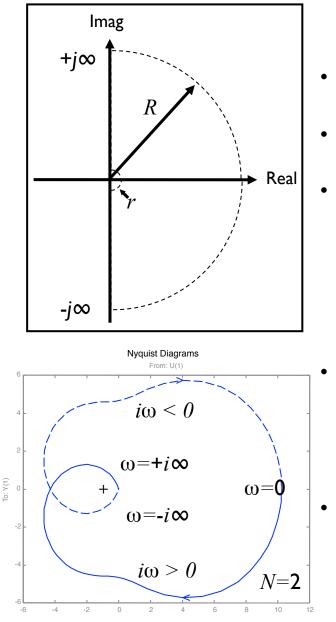
- Present: feedback proportional to current error
- Past: feedback proportional to *integral* of past error
 - Insures that error eventual goes to 0
 - Automatically adjusts setpoint of input
- Future: derivative of the error
 - Anticipate where we are going

PID design

- Choose gains k, k_i, k_d to obtain the desired behavior
- *Stability*: solutions of the closed loop dynamics should converge to eq pt
- *Performance*: output of system, y, should track reference
- Robustness: stability & performance properties should hold in face of disturbances and plant uncertainty

Nyquist Criterion

Determine stability from (open) loop transfer function, L(s) = P(s)C(s).


- Use "principle of the argument" from complex variable theory (see reading)
- Enables *loop shaping*: design open loop to enable closed loop properties

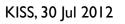
Thm (Nyquist). Consider the Nyquist plot for loop transfer function L(s). Let

- P # RHP poles of L(s)
- *N* # clockwise encirclements of -1
- Z # RHP zeros of 1 + L(s)

Then

$$Z = N + P$$

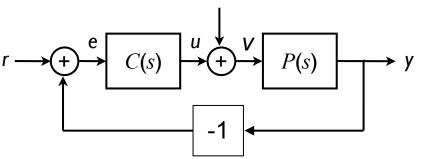
Real Axis


• Nyquist "D" contour

• Take limit as

$$r \to 0, R \to \infty$$

 Trace from –1 to +1 along imaginary axis


- Trace frequency response for *L(s)* along the Nyquist "D" contour
- Count net # of clockwise encirclements of the -1 point

Limits of Performance

Q: How well can you reject a disturbance?

- Would like v to be as small as possible
- Assume that we have signals v(t), d(t) that satisfy the loop dynamics
- Take Fourier transforms $V(\omega)$, $D(\omega)$

• Sensitivity function: $S(\omega) = V(\omega)/D(\omega)$; want $S(\omega) \ll 1$ for good performance

Thm (Bode) Under appropriate conditions (causality, non-passivity)

$$\int_0^\infty \log |S(\omega)| d\omega \ge 0$$

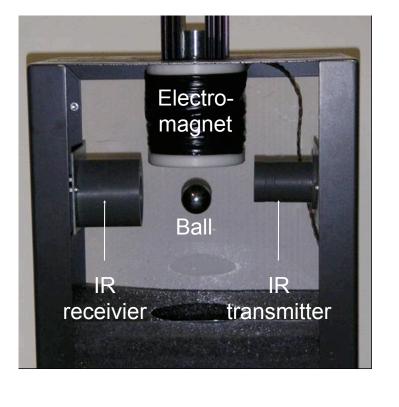
Consequences: achievable performance is bounded

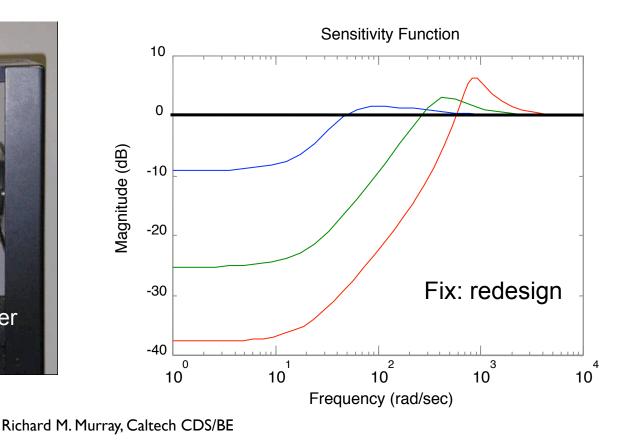
- Better tracking in some frequency band ⇒ other bands get worse
- For linear systems, formula is known as the Bode integral formula (get equality)
- "Passive" (positive real) systems can beat this bound

Extensions

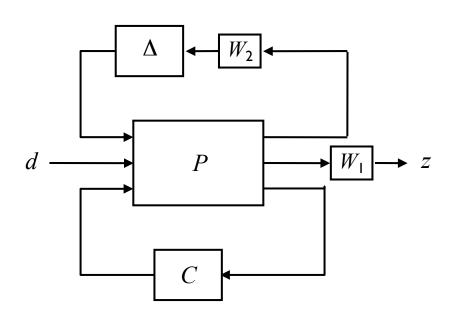
- Discrete time nonlinear systems: similar formula holds (Doyle)
- Incorporate Shannon limits for communication of disturbances (Martins et al)

Example: Magnetic Levitation System


Nominal design gives low perf


- Not enough gain at low frequency
- Try to adjust overall gain to improve low frequency response
- Works well at moderate gain, but notice waterbed effect

Bode integral limits improvement

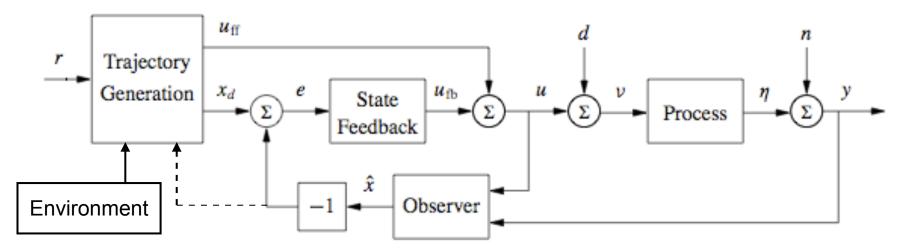

$$\int_{0}^{\infty} \log |S(j\omega)| d\omega = \pi r$$

 Must increase sensitivity at some point

Robust Control Theory

Model components as I/O operators

 $y(\cdot) = P(u(\cdot), d(\cdot), w(\cdot))$

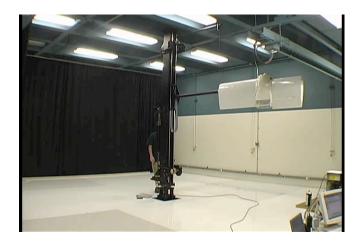

- d disturbance signal
- z output signal
- Δ uncertainty block
- W_1 performance weight
- W_2 uncertainty weight

Goal: guaranteed performance in presence of uncertainty

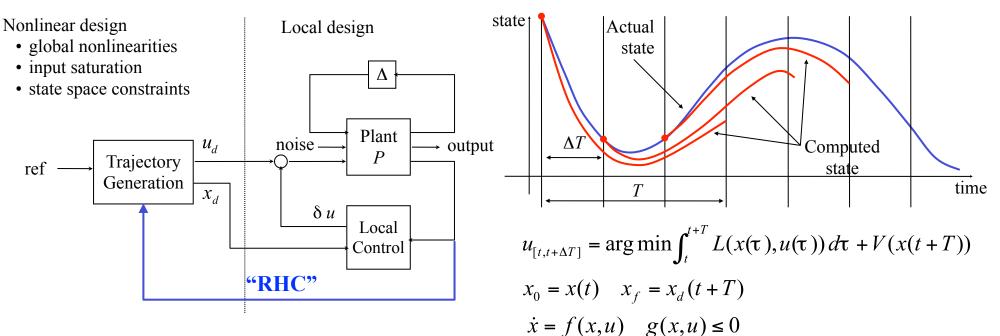
 $||z||_2 \le \gamma ||d||_2$ for all $||\Delta|| \le 1$

- Compare energy in disturbances to energy in outputs
- Use frequency weights to change performance/uncertainty descriptions
- "Can I get X level of performance even with Y level of uncertainty?"
- Generalizations to nonlinear systems (along trajectories) available [Tierno et al]

Feedforward and Feedback



Benefits of feedforward compensation

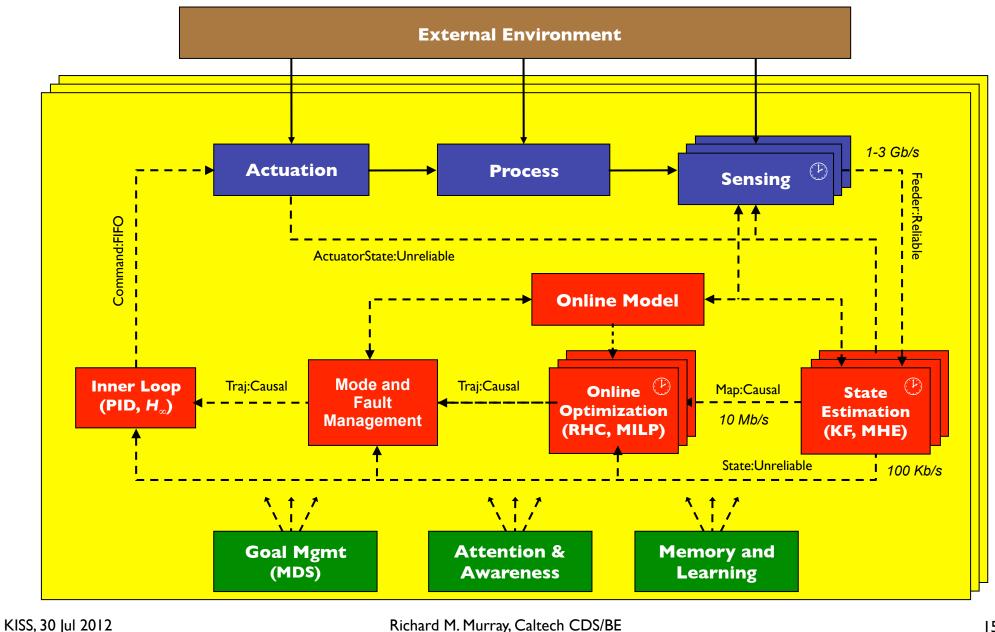

- Allows online generation of trajectories based on current situation/environment
- Optimization-based approaches can handle constraints, tradeoffs, uncertainty
- Trajectories can be pre-stored and used when certain conditions are met

Replanning using receding horizon

- Idea: regenerate trajectory based on new states, environment, constraints, etc
- Provides "outer loop" feedback at slower timescale
- Stability results available

Optimization-Based Control

Offline design + analysis \rightarrow online design


- Traditional: design (simple) controller, analyze performance, check with constraints
- Modern: specify performance and constraints, design trajectory/control to satisfy
- Problem: overall space too large; online optimization allows simplification
- Example of a "correct by construction" technique. Cost function = Lyapunov function

Links to resiliency

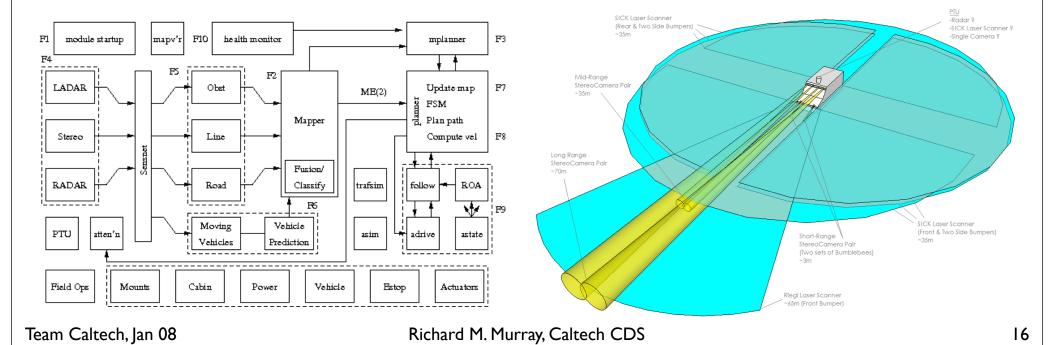
- Can "re-solve" the design problem in presence of (measurable) failures
- Still limited by our ability to formally specify behavior, computational tractability, etc

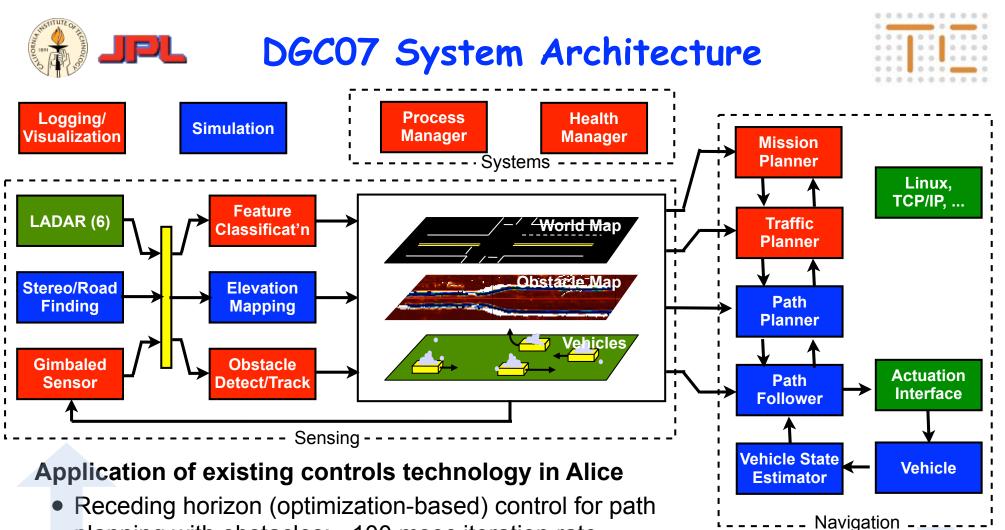
Networked Control Systems

(following P. R. Kumar)

Richard M. Murray, Caltech CDS/BE

Recent Example: Alice (DGC07)


Alice


- 300+ miles of fully autonomous driving
- 8 cameras, 8 LADAR, 2 RADAR
- 12 Core 2 Duo CPUs + Quad Core
- ~75 person team over 18 months

Software

- 25 programs with ~200 exec threads
- 237,467 lines of executable code

- planning with obstacles; ~100 msec iteration rate
- Multi-layer sensor fusion: sensor "bus" allows different combinations of sensors to be used for perceptors + fusion at "map" level
- Low level (inner loop) controls: PID w/ anti-windup (but based on a feasible trajectory from RHC controller)

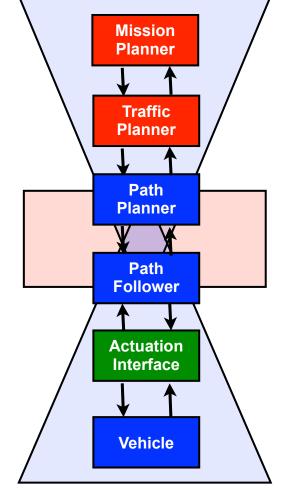
Properties

- Highly modular
- Rapidly adaptable
- Constantly viable
- Resilient ???

Planning Hourglass

•		0	0	0		•	•	0	0	0
•	0					•				0
۰		•		0	-0			0	-0	0
0				0	0		0	0	0	0
0				0	-0	U		0	•	0
0				0			-		-	
	0		0	0			-0		-01	

Protocol stack based architecture


- Planners uses directives/responses to communicate
- Each layer is isolated from the ones above and below
- Had 4 different path planners under development, two different traffic planners.

Engineering principle: layered protocols isolate interactions

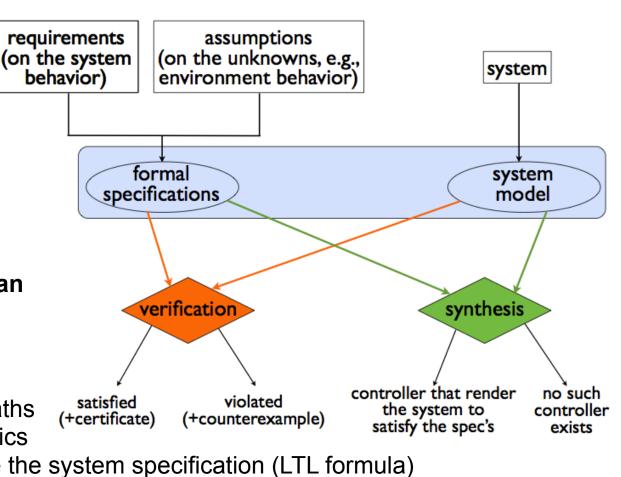
- Define each layer to have a specific purpose; don't rely on knowledge of lower level details
- Important to pass information back and forth through the layers; a fairly in an actuator just generate a change in the path (and perhaps the mission)
- Higher layers (not shown) monitor health and can act as "hormones" (affecting multiple subsystems)

Hybrid system control methodology

- Finite state automata control interactions between layers and mode switches (intersection, off road, etc)
- Formal methods for analysis of control protocol correctness (post race)
 - Eg: make sure that you never have a situation where two layers are in conflict

Formal Methods for System Verification & <u>Synthesis</u>

Specification using LTL


- Linear temporal logic (LTL) is a math'l language for describing linear-time prop's
- Provides a particularly useful set of operators for constructing LT properties without specifying sets

Existing methods for verifying an LTL specification

- *Theorem proving*: use formal logical manipulations
- satisfied violated • *Model checking*: search for paths the system to (+counterexample) (+certificate) that satisfy the system dynamics (transition system) and violate the system specification (LTL formula)
 - If none, system is correct. Otherwise, return a counter example

Methods for synthesis: paths + finite state automata

- Feasible paths: use model checking to find a "counter-example" (= feasible solution)
- Finite state automata: determine how to react to environment to satisfy a spec

Summary: Control Theory

Two main principles of (feedback) control theory

- Feedback is a tool to provide robustness to uncertainty
 - Uncertainty = noise, disturbances, unmodeled dynamics
 - Useful for modularity: consistent behavior of subsystems
- Feedback is a tool to design the dynamics of a system
 - Convert unstable systems to stable systems
 - Tune the performance of a system to meet specifications
- Combined, these principles enable modularity and hierarchy

Control theory: past, present and future

- Tools were originally developed to help engineers design low-level control systems
- Increasing application of control theory for networked (hybrid) control systems
- New challenge: systematic design of layered architectures and control protocols

More information

- Feedback Systems: http://www.cds.caltech.edu/~murray/FBSwiki
- Optimization-Based Control: http://www.cds.caltech.edu/~murray/FBSwiki/OBC
- Networked Control Systems: http://www.cds.caltech.edu/~murray/wiki/NCS_course
- Additional references will be posted on the workshop wiki

