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Distributed Control Protocols

Motivation and Applications

e Large-scale, complex, distributed
sensing, actuation and control
systems:

— Smart grid, Smart buildings, Aircraft/
Spacecraft systems, Automotive, Robotics,
Automation, Security

e Centralized control protocols:

— Infeasible, unreliable (not robust to
failure), lacking modularity

* Scalable design and verification tools
(theory and software) are lagging

e Approach: model-based, formal
methods for specification, modular
design, correct-by-construction
distributed embedded controllers
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Given

* models for the system and its
environment

e specifications for the desired
behavior

how to automatically design
control protocols that

Specify & Synthesize

Environment Model:
* assumptions on
uncontrollable
variables

+

Requirements:
* desired
behavior of the
system

4

System Model:
* restrictions on
the controlled
variables

!

Formal Specification
(using Linear Temporal Logic)

* manage the behavior of the system

* respond to changes in
— internal system state
— external environment
with

e “‘correctness” guarantees?

l

Synthesis

Digital synthesis tool

realizable

(+controller that render
the system satisfy the

spec’s)

N

[Piterman, Pnueli, Sa’ar]

unrealizable

(+no such controller
exists)



ecify & Synthesize

Given Environment Model: Requirements: System Model:
* assumptions on * desired + * restrictions on
e models for the system and its uncontrollable behavior of the the controlled
. variables system variables
environment = 4

e specifications for the desired

behavior '
how to automatically design @ — Ps
control protocols that l Assumptions -> Guarantees
* manage the behavior of the system Realizable: For all

Synthesis allowable behavior of the

* respond to changes in environment, the

— internal system state Digital synthesis tool controller guarantees
that the system behaves
— external environment \ “correctly”
. realizable unrealizable
Wlth (+controller that render (+no such controller
“ ” the system satisfy the exists)
® correctness guara ntees? spec’s)
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Extends with

A (and), V (or), o (eventually), OJ (always),
— (implies), = (not), U (until), O (next),

* Allows to reason about infinite sequences of states

* Specifications (formulas) describe sets of allowable and desired behavior
* safety specs: what actions are “not bad” or allowed
* fairness: when an action can be/should be taken (e.g., infinitely often)



Extends with

A (and), V (or), o (eventually), (I (always),
— (implies), = (not), U (until), O (next),

* Allows to reason about infinite sequences of states

* Specifications (formulas) describe sets of allowable and desired behavior
* safety specs: what actions are “not bad” or allowed
* fairness: when an action can be/should be taken (e.g., infinitely often)

* LTL operators can be combined to specify interesting behavior:

[J((detect suspicious) — (issue warning))

takeoff — (climb U (cruise U (descent U land)))
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System Model
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Interconnection Structure
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* Does there exist a set of local control protocols with the
given interconnection structure that satisfies the spec?

UNDECIDABLE!
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 Can we find sufficient conditions for realizability, and
* make use of the problem structure to reduce
complexity?
* design control protocols that can be
* synthesized
* implemented
in a decentralized way?
* What information exchange and interface models are
needed?
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MAIN IDEA: Decompose the global
specification Pe — Ps
into local ones, Pe; — Ps; .

* Decomposition induced by
underlying network structure

~———>» physical interaction

- = = » information exchange
O controllable subsystem
() controller

* Physical constraints to avoid
deadlocks and over-writing decisions

Theorem:
* If there exists local specifications Pe; = Ps; s.t.

/\igpei — Pe — Ps — /\igpsi

and each local specification is realizable by some
controller K, then implementing K. simultaneously
satisfies the global spec.
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legend: —— power flow

Theorem:
* If there exists local specifications Pe; = Ps; s.t.

/\igpei — Pe — Ps — /\igpsi

and each local specification is realizable by some
controller K, then implementing K. simultaneously
satisfies the global spec.

Necmiye Ozay, Caltech CDS

wind gusts & external temperature‘

13



MAIN IDEA: Decompose the global
specification Pe — Ps
into local ones Pe; 7 Ps.

———> physical interaction

If the decompositions satisfy the logical and
physical conditions, but some local specs are
unrealizable; then one can refine the local specs

by defining explicit interface rules.

- = = » information exchange
O controllable subsystem
() controller
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MAIN IDEA: Decompose the global
specification Pe — Ps
into local ones Pe; 7 Ps.

physical interaction

If the decompositions satisfy the logical and
physical conditions, but some local specs are
unrealizable; then one can refine the local specs

by defining explicit interface rules.

- = = » information exchange
O controllable subsystem
() controller

Feedback interconnection refinement: Assume both ¥Pes = Pso and Pe; — Ps; are

unrealizable. If there exist 32 and ¥23 such that
Y32 N\ Pey — P, N P23 and oz A e, — Qs A P32
Is realizable, then the local control protocols for the refined spec’s, guarantee that the

global spec is satisfied. need to be careful about circular reasoning!!!

KISS, 8/1/12 Necmiye Ozay, Caltech CDS 15



MAIN IDEA: Decompose the global
specification Pe — Ps
into local ones Pe; 7 Ps.

If the decompositions satisfy the logical and

physical conditions, but some local specs are _
unrealizable; then one can refine the local specs
by defining explicit interface rules.
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need to be careful about circular reasoning!!!
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MAIN IDEA: Decompose the global
specification Pe — Ps
into local ones Pe; 7 Ps.

These decompositions:

* allow local controllers to be
* separately synthesized (substantial
reductions in computational
complexity),
* locally implemented (increases
reliability)

* provide assume/guarantee ““contracts”

for each subsystem (increases design

modularity)
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Target

behavior
—_— —> —> = =
<« <«
Tracking Communication Control Communication  Continuous Dynamics
Software Protocol Protocol Protocol
Environment Assumptions: 3 . ~\._/
* At most N targets at a time j Ll
* Every target remains at least T time steps and vl s
eventually leaves =T e —
* Can only enter/exit through doors
* Can at most move a certain distance at each time step

- /I_\ -
System Model: o /\

* Area of coverage of each PTZ

.7 .
* Finite transition system representing PTZ motion ‘,-"’ Y -7
Sample Requirements: SUPTE A
* Take a high resolution picture of each target before LT
they leave the area Ikl TYO -
*Zoom into certain regions infinitely often
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— Temporal Logic Planning:

* Convert specification into a design criteria: “specify and synthesize”
instead of “design and verify”

* Formal framework for specifying goals (science objectives) and
requirements (fault management, hazard avoidance)

— Distributed synthesis: reduces complexity, enables local
implementations
— Interface rules = modularity, contract based design

— Automatic synthesis of control protocol as an enabler for
flexible autonomy (re-synthesize after learning more about
operating conditions?)



Current Directions:

— More real-time aspects; models for communication
delays

— What does the controller need to know about
implementation?

— We assume synchronous execution in synthesis, can we
allow/tolerate asynchrony to some extend?

— Automatic exploration of distributed control
architectures (information graph, logical
decompositions)

— Need to develop tools for automating
e the initial decomposition of spec’s in distributed synthesis
* the refinement step (interface rules)



