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“Resilience” 

 Literally, the ability to spring back 
 Resilient systems work, no matter what 

 Brittle systems are not resilient 
 Small problems easily break them 
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Engineered Resilience 
 Resilience in nature 

arises over many 
generations through  
trial and error 

 Engineered resilience 
must often be right 
the first time 
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Many Ways to Fail 
  Stakeholder concerns that aren’t 

properly appreciated, reconciled, 
or accommodated 

  Progress thwarted by intolerance 
to development uncertainties 

  System interactions that come as 
a surprise 

  Late discovery of design or 
implementation errors 

  Unvalidated assumptions 
  Poor risk assessments 
  Inadequate or misapplied V&V 
  Unethical conduct 
  Flight manifestation of 

uncorrected design flaws 

 Fatal defects in materials, 
implementation, workmanship, 
tools… 

 Unusual or unanticipated 
environments 

  Stress damages the system 
  Control outside the validated 

regime 
  Inability to degrade gracefully 
 Changes in mission or usage that 

violate assumptions 
 Operator error 
 Malicious action 

et cetera! 

Often an unfortunate combination of things 
Often resulting in convoluted behavior 
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We Know 
What Resilience Looks Like 
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* So far, dependent on 
many clever people 
and considerable luck 

Apollo 13* 

Innovative repurposing 

Galileo* 

Computing margin and  
flexible re-programmability 

Hubble Space 
Telescope* 

On-orbit instrument 
replaceability 

Titan Balloon 

Self-direction and  
tolerance for variety 

T-800 

Graceful degradation and  
goal-oriented behavior 
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Robustness is like siege defense: 
  Strong walls and plenty of supplies,  
  but not much freedom 

Still Largely a Defensive Exercise 
 Robust engineering tolerance  

is largely concerned with prescribed  
variation 
 Depends on an assured perimeter 

  Qualification ranges, diligent oversight,  
“test as you fly…”, conservative analysis… 

 And ample resources 
  Overdesign, operating margins, redundancy,  

schedule slack, opportunity to retry… 

 Okay for lots of systems,  
but always a limiting strategy 
  Retry or retreat can’t be the answer to every 

challenging situation 
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Do We Defend or Adapt? 
 Defense is increasingly an  

incomplete strategy 
 Robustness is already a hard problem 
 But problems are trending beyond  

robustness to matters  
of astuteness 

 Defense must be augmented with Adaptation 
 Figure out what’s happening and deal with it creatively 
 Less canned responses; more cognitive, coherent deliberation 
 Depends on acquiring knowledge, and an ability to solve problems 

and to improvise 

 This makes a hard problem much harder 

7 



  July 2012 

Tough Architectural Questions 
 When is resilience the right answer? 

 Where does resilience fit among all other 
system concerns? 

 What are the technical and programmatic 
building blocks of resilience? 

 How does one provide a fundamental, 
reasoned basis for declaring that a system 
has resilience? 
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A Systems Engineering Challenge 
  No simple sum of technologies will do 

  Resilience of a system can’t be derived from resilience of its parts 
  Resilience can’t injected into a system or added onto it 

  Like all architectural considerations, resilience is a 
system characteristic 
  Simple problems can topple whole systems 
  All parts of system must participate in solutions 
  Adaptation requires reasoning about the system 
  Reasoning requires understandable systems 

  “The System” is not one thing, but many 
  Variation, surprise, and invention are to be expected, not avoided 
  Adaptation solutions are open ended 
  Engineering the design space is “architecture” 
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A Definition 
 A System is anything greater than the sum of 

its parts 
 Every part affects others — the parts become 

one 
 New attributes, not intrinsic to the parts, arise 

solely from these interactions 
 This phenomenon is commonly referred to 

as emergence 

 Systems are intrinsically about 
 what is added 
  through interaction 
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Interaction, Not Interface 
 Interactions can be… 

 Exchanges of material, energy, or information 
 Coupled attributes or shared constraints 
 Planned or not planned 

 Interfaces per se are not paramount 
 What matters is how each part affects the 

others 

Winslow Homer (1836 –1910)  
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similar 
parts 

similar 
systems 
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Emergence, Not Integration 
 Additions can be new capabilities, functions, or 

behaviors . . . abstract entities, but… 

 The resulting systems are new, real things 
in their own right 

 Not merely an arrangement  
of parts and interfaces 

 Similar arrangements of 
different parts can yield 
essentially the same system 

 Different arrangements of 
similar parts can yield 
quite different systems 
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The Value in Thinking This Way 
 If you start to think about the features 

you want as things that must emerge  
through interaction… 

 Then you can’t help also wondering about 
other things that might emerge, besides 
the ones you intended 
 Whatever produces one will inevitably produce 

the other as a side effect 
 You must always worry about both 

 How would you know?! 
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 As complexity grows, the number of potential 
interactions grows disproportionately 

 Each layer removes us further from core analytical 
capabilities 

 Confidence diminishes in explaining how things 
work a priori 

 Even “correct” designs surprise us routinely 
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The Complexity Crisis 

G R O W I N G  C O M P L E X I T Y  
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Complexity ⇒ Misunderstanding 
 Complexity is basically a measure of how 

hard something is to understand 
 Variety, connectivity, depth, instability, opacity, 

intricacy, uncertainty, ambiguity… 
 Applies to both analysis and communication 

 Complexity occupies the space between 
understanding and reality 
 For a complex system to succeed, many things 

have to be done right 
 However, a complex system can fail, even when  

all its parts work as designed 
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The Central Problem… 
 In both science and engineering: 

Find simple rules for complex behavior 

 Rules are sought wherever there are patterns 
 Patterns are expressions of the underlying rules 

  Recurring structure 
  Invariants among items, which may appear on the surface to 

be different 
  Layered descriptions 

  Ideas explained in terms of what’s already understood 
  Separation of concerns 

  Limits on what must be considered at one moment 
 etc. 
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Good Patterns… 
 Not only describe — they explain! 

 As theories improve, they tend to become 
conceptually more abstract and layered 

 So the rules at each layer can become simpler 

fractal fern 

Conus textile 

DNA 

NGC 4696 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 

Fibonacci spirals 



  July 2012 

In Engineering 
The Same Principles Apply 

 Patterns impose order 
 Recurring Structure —  

  Mass production, standards for interface/form/
process… 

 Layered Descriptions —  
  Hierarchical system design, protocol stacks… 

 Separation of Concerns —  
  Functional decomposition, weak coupling, 

modularity… 

 Order fosters understandability 

 These are the organizing Concepts of the 
architecture 
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Complex 
Realization: 
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Concepts Can Get Lost 
  Each part of a system participates  

in many concepts 
  This many-to-few mapping is  

responsible for troublesome  
entanglement of concepts in a  
complex system 

Example 
An IMU is not merely a unit 
satisfying many disparate 
requirements flowed down 
“from above” 
It is… 

• a sensor in a 
control concept 

• a region in a fault 
containment concept 

• a load in a 
power concept 

• a critical item in a 
safing concept 

• a node in a 
networking concept 

• a ward in a 
shielding concept 

• a source in a 
telemetry concept, 

 and so on 
Many more conceptual 
parts than realizational 
parts 
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Nonetheless,  
Realization Seems To Rule! 

 We tend to describe concepts in terms of 
their concrete implementations, rather than 
basic ideas 
 Levels gets flattened 
 Disparate concerns are swept together 
 Attention shifts from similarities to differences 
 General rules are replaced by point design 

descriptions 
 Complexity moves in to exploit  

inattention to pattern 
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Concepts Need Space 
 If concepts aren’t clearly and separately 

delineated, patterns can’t assert themselves in a 
systematic or reliable way 
 Even in realization, concepts must remain clearly 

articulated 
 Handling each concept on its own terms permits 

each to take its preferred form 
 Many concepts can overlap in the same system, 

despite widely disparate structures 
  E.g., the physical and logical structure of the Internet are  

completely different (diverse inter-connected networks  
versus layered protocols) 
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Pattern versus Design 
  Conceptual patterns must retain prominence throughout 

the lifecycle 
  The rules that give rise to these patterns comprise a set 

of constraints on what we can design 
  They tell us both what the design can and cannot be 
  They allow as design only what can be analyzed or validated 

  They help us see what is essential to a design concept 

  It is from such rules and exclusions that engineering 
elegance is possible — without which… 
  Systems become increasingly muddled with incidental complexity 
  Piecemeal, ad hoc accommodations gradually ossify designs 
  Understanding becomes increasingly difficult 
  Shortfalls in functionality and efficiency are inevitable 
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However, 
Not All Patterns are Created Equal 

 We are awash in engineering “patterns” 
  Projects generate thousands of pages of design description in 

many forms 
  They describe modules, hierarchies, protocols, design 

requirements, processes, and so on — eventually in great detail 
  There are schemes for bus communications, power & grounding, 

fault containment, sequence coordination, time synchronization, 
and on and on 

  It’s a mixed story 
  Some work a lot better than others 
  Some are arbitrary 
  And some old standbys are notoriously poor 

 Many, however, have no clear conceptual delineation 
  We know something important is happening, but… 
  Like undiscovered Laws of Nature, they have no explanatory 

power 
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Lessons from Nature 
 Complex, engineered systems are 

understandable only if well-chosen patterns 
are imposed to make understanding possible  

 We seek patterns that are… 
 Stable — won’t need frequent revision 
 Fundamental — broadly address important 

issues 

 As in nature these tend to be simple 
 But being complete and consistent are also 

essential 
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Also Important… 
 Good patterns adhere strongly to aesthetics, 

experience, and fundamental principles 
 Their rules enable modeling of adequate form & 

fidelity to address all attributes of concern 
 They are easily explained, so that compliance 

can be required and verified 

  In other words, we choose the patterns that  
permit us to demonstrate with confidence the 
correctness and suitability of our concepts 

Good patterns 
make such understanding practical 
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A Fault Management Example 
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Typical Fault Management Notions 
“Concepts” 

  Fault Tree, Failure Modes & 
Effects Analysis 

  Error, Fault, Failure 
  Threshold, Event, Persistence 
  Detection, Monitor, Isolation, 

Response 
  Priority, Level 
  Critical Period, Mark & Rollback 
  Safing 

“Patterns” 
  Monitors trigger responses 
  Every monitor and response 

can be disabled 
  Responses terminate 

command sequences 

“Principles” 
  Respond only to unacceptable 

conditions 
  Avoid hair triggers and retriggering 
  Tolerate false alarms 
  Make parameters commandable 
  Corroborate before severe 

responses 
  Ensure commandability and long 

term safety 
  Preserve consumables and critical 

data 
  Log events and actions 

etc. 

etc. 

etc. 
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Fundamental? 
 Not Really 

 Imprecise and fragmented concepts 
 Weak patterns and principles 
 Exceptions and omissions 
 Cluttered with incidentals 

 Part of an even larger collection of interrelated 
notions in system management 

 Yet generally implemented separate from them 

 No concise “Theory of Fault Protection” 

28 



  July 2012 

A Sample Conceptual Mapping Issue 
 Persistence threshold value: 

 Appears in monitoring functions, but is it… 
 Likelihood, transient duration, system error 

tolerance, response delay, false alarm avoidance, 
or what? 

 Role depends on assumed meaning 
 Detection in state estimation 
 Branching in control decisions 
 Precedence among objectives 
 etc. 
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Back to Basics 
What Does Fault Management Do? 

  Observes the system  (measurements…) 

  Uses models  (failure modes…) 

  Estimates system state  (health, hazards…) 

  Choses and coordinates  (conflicts, resource use…) 
actions 

  Directs the system  (commands…) 

  Meets system objectives  (safety, viability, critical events…) 

30 

Fault Management is 
  a Control System 

Fault Management is part of  
 an integrated  Control System 
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Cognitive Control Fundamentals 
Concepts 

  Objectives on state 
  Models of state behavior 
  Knowledge of state  
  Closed control loops on state 

Patterns 
  Each system state is assigned 

a cognizant control system 
  Control systems interact via 

explicit state knowledge and 
coordinated objectives 

  Knowledge and control 
designs exploit models 

Principles 
  Make objectives explicit, 

complete and clear 
  Uniquely assign responsibility 

for all objectives on a state 
  Make model usage apparent 

and consistent 
  Explicitly coordinate 

concurrent objectives 
  Keep state estimation 

independent of state control 
  Represent state knowledge 

uncertainty openly and 
objectively 

  Strive for a single source of 
truth for state knowledge 

  Make control decisions based 
only on state knowledge and 
objectives 
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Differences in Perspective 
When Concepts Retain Prominence 

 “Fault management” detects and responds 
to faults 

 Fault tolerant control systems achieve 
important system objectives, even when 
faults happen 

 “Fault management” is verified by testing  
all monitors and responses 

 Fault tolerant control systems are verified 
by showing how well they guard expectations 
of system performance 

and so on 
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Resilience Architecture 
 What are the patterns and principles of 

resilience? 
  If there is not theory for fault tolerance (or other 

matters), how could there be one for resilience? 
 Is overall architectural integrity a prerequisite for 

resilience? 
  If an architecture can’t easily be understood, how could 

one claim it is resilient? 
 How can architectural concepts for resilience be 

integrated without losing their integrity? 
  If the patterns and principles of resilience aren’t 

apparent in the system, how would one know they are 
still there? 
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Conclusion 

Resilience starts 
with strong concepts 

 
Resilience ends  

when conceptual integrity is lost 
 

Practice principled architecture! 
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