
 July 2012

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Principled System Architecture

prerequisite for resilience

Robert Rasmussen

Keck Institute for Space Studies — Workshop: Engineering Resilient Space Systems

 July 2012

“Resilience”

 Literally, the ability to spring back
 Resilient systems work, no matter what

 Brittle systems are not resilient
 Small problems easily break them

2

 July 2012

Engineered Resilience
 Resilience in nature

arises over many
generations through
trial and error

 Engineered resilience
must often be right
the first time

3

 July 2012

Many Ways to Fail
  Stakeholder concerns that aren’t

properly appreciated, reconciled,
or accommodated

  Progress thwarted by intolerance
to development uncertainties

  System interactions that come as
a surprise

  Late discovery of design or
implementation errors

  Unvalidated assumptions
  Poor risk assessments
  Inadequate or misapplied V&V
  Unethical conduct
  Flight manifestation of

uncorrected design flaws

 Fatal defects in materials,
implementation, workmanship,
tools…

 Unusual or unanticipated
environments

  Stress damages the system
  Control outside the validated

regime
  Inability to degrade gracefully
 Changes in mission or usage that

violate assumptions
 Operator error
 Malicious action

et cetera!

Often an unfortunate combination of things
Often resulting in convoluted behavior

4

 July 2012

We Know
What Resilience Looks Like

5

* So far, dependent on
many clever people
and considerable luck

Apollo 13*

Innovative repurposing

Galileo*

Computing margin and
flexible re-programmability

Hubble Space
Telescope*

On-orbit instrument
replaceability

Titan Balloon

Self-direction and
tolerance for variety

T-800

Graceful degradation and
goal-oriented behavior

 July 2012

Robustness is like siege defense:
 Strong walls and plenty of supplies,
 but not much freedom

Still Largely a Defensive Exercise
 Robust engineering tolerance

is largely concerned with prescribed
variation
 Depends on an assured perimeter

  Qualification ranges, diligent oversight,
“test as you fly…”, conservative analysis…

 And ample resources
  Overdesign, operating margins, redundancy,

schedule slack, opportunity to retry…

 Okay for lots of systems,
but always a limiting strategy
  Retry or retreat can’t be the answer to every

challenging situation
6

 July 2012

Do We Defend or Adapt?
 Defense is increasingly an

incomplete strategy
 Robustness is already a hard problem
 But problems are trending beyond

robustness to matters
of astuteness

 Defense must be augmented with Adaptation
 Figure out what’s happening and deal with it creatively
 Less canned responses; more cognitive, coherent deliberation
 Depends on acquiring knowledge, and an ability to solve problems

and to improvise

 This makes a hard problem much harder

7

 July 2012

Tough Architectural Questions
 When is resilience the right answer?

 Where does resilience fit among all other
system concerns?

 What are the technical and programmatic
building blocks of resilience?

 How does one provide a fundamental,
reasoned basis for declaring that a system
has resilience?

8

 July 2012

A Systems Engineering Challenge
  No simple sum of technologies will do

  Resilience of a system can’t be derived from resilience of its parts
  Resilience can’t injected into a system or added onto it

  Like all architectural considerations, resilience is a
system characteristic
  Simple problems can topple whole systems
  All parts of system must participate in solutions
  Adaptation requires reasoning about the system
  Reasoning requires understandable systems

  “The System” is not one thing, but many
  Variation, surprise, and invention are to be expected, not avoided
  Adaptation solutions are open ended
  Engineering the design space is “architecture”

9

 July 2012 10

A Definition
 A System is anything greater than the sum of

its parts
 Every part affects others — the parts become

one
 New attributes, not intrinsic to the parts, arise

solely from these interactions
 This phenomenon is commonly referred to

as emergence

 Systems are intrinsically about
 what is added
 through interaction

 July 2012 11

Interaction, Not Interface
 Interactions can be…

 Exchanges of material, energy, or information
 Coupled attributes or shared constraints
 Planned or not planned

 Interfaces per se are not paramount
 What matters is how each part affects the

others

Winslow Homer (1836 –1910)

 July 2012

similar
parts

similar
systems

12

Emergence, Not Integration
 Additions can be new capabilities, functions, or

behaviors . . . abstract entities, but…

 The resulting systems are new, real things
in their own right

 Not merely an arrangement
of parts and interfaces

 Similar arrangements of
different parts can yield
essentially the same system

 Different arrangements of
similar parts can yield
quite different systems

 July 2012 13

The Value in Thinking This Way
 If you start to think about the features

you want as things that must emerge
through interaction…

 Then you can’t help also wondering about
other things that might emerge, besides
the ones you intended
 Whatever produces one will inevitably produce

the other as a side effect
 You must always worry about both

 How would you know?!

 July 2012

 As complexity grows, the number of potential
interactions grows disproportionately

 Each layer removes us further from core analytical
capabilities

 Confidence diminishes in explaining how things
work a priori

 Even “correct” designs surprise us routinely

14

The Complexity Crisis

G R O W I N G C O M P L E X I T Y

 July 2012

Complexity ⇒ Misunderstanding
 Complexity is basically a measure of how

hard something is to understand
 Variety, connectivity, depth, instability, opacity,

intricacy, uncertainty, ambiguity…
 Applies to both analysis and communication

 Complexity occupies the space between
understanding and reality
 For a complex system to succeed, many things

have to be done right
 However, a complex system can fail, even when

all its parts work as designed

15

 July 2012 16

The Central Problem…
 In both science and engineering:

Find simple rules for complex behavior

 Rules are sought wherever there are patterns
 Patterns are expressions of the underlying rules

  Recurring structure
  Invariants among items, which may appear on the surface to

be different
  Layered descriptions

  Ideas explained in terms of what’s already understood
  Separation of concerns

  Limits on what must be considered at one moment
 etc.

 July 2012 17

Good Patterns…
 Not only describe — they explain!

 As theories improve, they tend to become
conceptually more abstract and layered

 So the rules at each layer can become simpler

fractal fern

Conus textile

DNA

NGC 4696

0
1
1
2
3
5
8
13
21
34
55
89
144

Fibonacci spirals

 July 2012

In Engineering
The Same Principles Apply

 Patterns impose order
 Recurring Structure —

  Mass production, standards for interface/form/
process…

 Layered Descriptions —
  Hierarchical system design, protocol stacks…

 Separation of Concerns —
  Functional decomposition, weak coupling,

modularity…

 Order fosters understandability

 These are the organizing Concepts of the
architecture

18

 July 2012

Complex
Realization:

19

Concepts Can Get Lost
  Each part of a system participates

in many concepts
  This many-to-few mapping is

responsible for troublesome
entanglement of concepts in a
complex system

Example
An IMU is not merely a unit
satisfying many disparate
requirements flowed down
“from above”
It is…

• a sensor in a
control concept

• a region in a fault
containment concept

• a load in a
power concept

• a critical item in a
safing concept

• a node in a
networking concept

• a ward in a
shielding concept

• a source in a
telemetry concept,

 and so on
Many more conceptual
parts than realizational
parts

 July 2012

Nonetheless,
Realization Seems To Rule!

 We tend to describe concepts in terms of
their concrete implementations, rather than
basic ideas
 Levels gets flattened
 Disparate concerns are swept together
 Attention shifts from similarities to differences
 General rules are replaced by point design

descriptions
 Complexity moves in to exploit

inattention to pattern

20

 July 2012

Concepts Need Space
 If concepts aren’t clearly and separately

delineated, patterns can’t assert themselves in a
systematic or reliable way
 Even in realization, concepts must remain clearly

articulated
 Handling each concept on its own terms permits

each to take its preferred form
 Many concepts can overlap in the same system,

despite widely disparate structures
  E.g., the physical and logical structure of the Internet are

completely different (diverse inter-connected networks
versus layered protocols)

21

 July 2012

Pattern versus Design
  Conceptual patterns must retain prominence throughout

the lifecycle
  The rules that give rise to these patterns comprise a set

of constraints on what we can design
  They tell us both what the design can and cannot be
  They allow as design only what can be analyzed or validated

  They help us see what is essential to a design concept

  It is from such rules and exclusions that engineering
elegance is possible — without which…
  Systems become increasingly muddled with incidental complexity
  Piecemeal, ad hoc accommodations gradually ossify designs
  Understanding becomes increasingly difficult
  Shortfalls in functionality and efficiency are inevitable

22

 July 2012 23

However,
Not All Patterns are Created Equal

 We are awash in engineering “patterns”
  Projects generate thousands of pages of design description in

many forms
  They describe modules, hierarchies, protocols, design

requirements, processes, and so on — eventually in great detail
  There are schemes for bus communications, power & grounding,

fault containment, sequence coordination, time synchronization,
and on and on

  It’s a mixed story
  Some work a lot better than others
  Some are arbitrary
  And some old standbys are notoriously poor

 Many, however, have no clear conceptual delineation
  We know something important is happening, but…
  Like undiscovered Laws of Nature, they have no explanatory

power

 July 2012 24

Lessons from Nature
 Complex, engineered systems are

understandable only if well-chosen patterns
are imposed to make understanding possible

 We seek patterns that are…
 Stable — won’t need frequent revision
 Fundamental — broadly address important

issues

 As in nature these tend to be simple
 But being complete and consistent are also

essential

 July 2012 25

Also Important…
 Good patterns adhere strongly to aesthetics,

experience, and fundamental principles
 Their rules enable modeling of adequate form &

fidelity to address all attributes of concern
 They are easily explained, so that compliance

can be required and verified

  In other words, we choose the patterns that
permit us to demonstrate with confidence the
correctness and suitability of our concepts

Good patterns
make such understanding practical

 July 2012

A Fault Management Example

26

 July 2012

Typical Fault Management Notions
“Concepts”

  Fault Tree, Failure Modes &
Effects Analysis

  Error, Fault, Failure
  Threshold, Event, Persistence
  Detection, Monitor, Isolation,

Response
  Priority, Level
  Critical Period, Mark & Rollback
  Safing

“Patterns”
  Monitors trigger responses
  Every monitor and response

can be disabled
  Responses terminate

command sequences

“Principles”
  Respond only to unacceptable

conditions
  Avoid hair triggers and retriggering
  Tolerate false alarms
  Make parameters commandable
  Corroborate before severe

responses
  Ensure commandability and long

term safety
  Preserve consumables and critical

data
  Log events and actions

etc.

etc.

etc.

27

 July 2012

Fundamental?
 Not Really

 Imprecise and fragmented concepts
 Weak patterns and principles
 Exceptions and omissions
 Cluttered with incidentals

 Part of an even larger collection of interrelated
notions in system management

 Yet generally implemented separate from them

 No concise “Theory of Fault Protection”

28

 July 2012

A Sample Conceptual Mapping Issue
 Persistence threshold value:

 Appears in monitoring functions, but is it…
 Likelihood, transient duration, system error

tolerance, response delay, false alarm avoidance,
or what?

 Role depends on assumed meaning
 Detection in state estimation
 Branching in control decisions
 Precedence among objectives
 etc.

29

 July 2012

Back to Basics
What Does Fault Management Do?

  Observes the system (measurements…)

  Uses models (failure modes…)

  Estimates system state (health, hazards…)

  Choses and coordinates (conflicts, resource use…)
actions

  Directs the system (commands…)

  Meets system objectives (safety, viability, critical events…)

30

Fault Management is
 a Control System

Fault Management is part of
 an integrated Control System

 July 2012

Cognitive Control Fundamentals
Concepts

  Objectives on state
  Models of state behavior
  Knowledge of state
  Closed control loops on state

Patterns
  Each system state is assigned

a cognizant control system
  Control systems interact via

explicit state knowledge and
coordinated objectives

  Knowledge and control
designs exploit models

Principles
  Make objectives explicit,

complete and clear
  Uniquely assign responsibility

for all objectives on a state
  Make model usage apparent

and consistent
  Explicitly coordinate

concurrent objectives
  Keep state estimation

independent of state control
  Represent state knowledge

uncertainty openly and
objectively

  Strive for a single source of
truth for state knowledge

  Make control decisions based
only on state knowledge and
objectives

31

 July 2012

Differences in Perspective
When Concepts Retain Prominence

 “Fault management” detects and responds
to faults

 Fault tolerant control systems achieve
important system objectives, even when
faults happen

 “Fault management” is verified by testing
all monitors and responses

 Fault tolerant control systems are verified
by showing how well they guard expectations
of system performance

and so on
32

 July 2012

Resilience Architecture
 What are the patterns and principles of

resilience?
  If there is not theory for fault tolerance (or other

matters), how could there be one for resilience?
 Is overall architectural integrity a prerequisite for

resilience?
  If an architecture can’t easily be understood, how could

one claim it is resilient?
 How can architectural concepts for resilience be

integrated without losing their integrity?
  If the patterns and principles of resilience aren’t

apparent in the system, how would one know they are
still there?

33

 July 2012

Conclusion

Resilience starts
with strong concepts

Resilience ends

when conceptual integrity is lost

Practice principled architecture!

34

