Engineering Resilient Space Systems Introduction to Short Course

Co-Leads
Leonard Reder, John Day, Mitch Ingham – JPL/Caltech
Richard Murray – Caltech
Brian Williams – MIT
July 30, 2012

Study Question?

How to conceive, develop and operate a future class of spacecraft that will require unprecedented resilience?

- Ability to execute a mission with changing science objectives
- 2. Adaptability to unexpected changes in spacecraft health, performance, and/or the environment
 - Study integrates concepts from another proposed study entitled "New Space Exploration Concepts Enabled by Revolutionary Flight Software Architectures"
 - Question: What will spacecraft flight software look like in 25 years and why?

What is a resilient control system?

- From Wikipedia (<u>Resilient Control Systems</u>):
 - "Resilient control systems are those that tolerate fluctuations via their structure, design parameters, control structure and control parameters"
 - "... is one that maintains state awareness and an accepted level of operational normalcy in response to disturbances, including threats of an unexpected and malicious nature"

Resilience Engineering

- "Resilience engineering is concerned with building systems that are able to circumvent accidents through anticipation, survive disruption through recovery, and grow through adaptation"
 - Failures represent inability to adapt
 - Opposite of resilience is "brittleness"
 - A system unsuitable to adapt to the unexpected is brittle!
 - Resilience implies "elasticity"
 - Systems with capability to return to original stable state after being bent, compressed or stretched by unexpected change

"Towards a Conceptual Framework for Resilience Engineering" Azad M. Madni and Scott Jackson IEEE Systems Journal, Vol. 3, No. 2, June 2009

Autonomy Is Important

Short Course

- Resilient space systems engineering is inherently multidisciplinary!!
- Short course talks do not present resilient systems discussions, but rather, provide the context and background information to enable productive discussion of the topic
- Topics:
 - 1. Principled System Architecture Rasmussen
 - 2. Capturing FSW Architectures Using DSLs Gostelow
 - 3. Control Theory and Methods Murray
 - 4. Autonomy Practices Williams
 - 5. Ultra-Reliability for Interstellar Missions Garrett

Engineering Resilient Space Systems July 30 - August 3 2012 Overview Schedule

Monday, July 30, 2012 - Hameetman Auditorium - Cahill Building		
Time	Short Course - Open to All Interested Parties	Speaker
8:00 - 8:30	Coffee and refreshments	
8:30 - 8:45	Introduction to Short Courses - What is a resilient system?	Team Leads; Short Courses Moderated By: Len Reder
8:45 - 10:00	Principled System Architecture (includes 15 minutes for Q+A)	Robert Rasmussen
10:00-10:30	Break (Coffee, Discussion)	
10:30-11:45	Capturing Flight Software Architecture using DSLs (includes 15 minute for Q+A)	Kim Gostelow
11:45 - 12:45	On site, informal lunch provided by KISS for all short course attendees	
12:45 - 2:00	Control Theory and Methods (includes 15 minutes for Q+A)	Richard Murray
2:00 - 2:30	Break (Coffee, Discussion)	
2:30-3:45	Autonomy Practices (includes 15 minutes for Q+A)	Brian Williams
3:45-5:00	Ultra-Reliability for Interstellar Missions (includes 15 minutes for Q+A)	Henry Garrett
5:00	SHORT COURSE CONCLUDES © 2012. All rights reserved	