Agile Science Operations

David R. Thompson

Machine Learning and Instrument Autonomy Jet Propulsion Laboratory, California Institute of Technology

Engineering Resilient Space Systems Keck Institute Study, July 31 2012.

A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Copyright 2012 California Institute of Technology. All Rights Reserved; U. S. Government Support Acknowledged.

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

Agenda

Motivation: science at primitive bodies

Critical Path Analysis and reaction time

A survey of onboard science data analysis

Case study – how could onboard data analysis impact missions?

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

JPL

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate

Typical encounter (Lutetia 21, Rosetta)

Primitive bodies: key measurements

Potential Landing Sites

Phobos

Reproduced from Castillo-Rogez, Pavone, Nesnas, Hoffman, "Expected Science Return of Spatially-Extended In-Situ Exploration at Small Solar System Bodies," *IEEE Aerospace* 2012.

A short exercise in science agility

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate

Challenges for primitive bodies science

Limited bandwidth and intermittent communications

Target locations are not known in advance Closest approach may pass quickly (subhour timescales)

Geometry and illumination constraints

Features of interest are highly localized Surface activity is transient, time-variable

Images: Tempel 1 (Deep Impact) PIA 02142, NASA/JPL/UMD

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate

Reaction Time

The minimum time required for a new science measurement to affect spacecraft action.

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

Critical path analysis

Thompson et al., SpaceOps 2012

Factors driving mission reaction time

Representative command cycles

	Light time delay	DSN Pass	Science data analysis	Trajectory Generation	Activity Planning	Sequencing / Validation	Reaction time
EO-1 Earth Orbiting [Chien 2011]	-	1-2d	1-2d	-	7d	-	6-20d
Cassini Grand Tour [Paczkowski 2009]	1.25h	~9h	-	-	70d	70d	>140d
MER Rover [Mishkin 2006]	15m	23h	2-10h	~1h (driving)	5-7h	8-11h	23h
Comet Encounter [Kochny 2007]	~1h	7d	Varies	~25d	4d	5d	14d (nominal)
					Image: H	artley 2 (EPOXI), NASA/JI	PL/UMD

Challenge: rapid tactical operations for primitive bodies missions

- Get the most science from time-limited missions
- Achieve MER-style operational flexibility under deep space constraints
- Speed the "learning curve" to identify key science questions

Challenge: get the most science from time-limited missions

- Achieve MER-style operations agility under deep space constraints
- Enable time-domain science investigations
- Collect data from targets of opportunity
- Provide high-resolution targeted data during flybys
- Improve planning turnaround to speed the science "learning curve"
- Spring back from failures

Agenda

Motivation: primitive bodies operations

Critical Path Analysis and reaction time

A survey of onboard science data analysis

Case study – what could we do with onboard data analysis?

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

Where can we optimize?

Approach 1: Faster replanning cycle

- Contingency planning (maintain a pool of valid plans for different objectives)
- Expedited ground science data analysis, smart "quicklook" products

Approach 2: Onboard data analysis

- Selective targeted data collection and return to exploit targets of opportunity (erosion features, outgassing, etc).
- Enable time-critical decisions onboard

EO-1 Hyperspectral novelty detection

Endmember detection followed by spectral angle mapping

Steamboat, NV. Nov 2011 overflight

EO-1 Thermal signature detection

Black Body model used to trigger a second observation [Chien et al. 2005]

Target detection in images (AEGIS)

Contour-based rock detection. targeted followup of high-value targets [Estlin et al., 2012]

Automatic data collection from top target matching "dark" profile

Images: Cornell / NASA/ JPL / Caltech

NASA / Caltech / JPL / Instrument Software and Science Data Systems

Dust Devil Detection on Mars (WATCH)

Frame differencing with change detection to trigger selective downlink [Castano et al., 2008]

Automatic data collection from top target matching "dark" profile

Images: Cornell / NASA/ JPL / Caltech

NASA / Caltech / JPL / Instrument Software and Science Data Systems

Surface classification (TextureCam)

Pixel-wise surface mapping with a trained decision forest classifier

Legacy panorama (Mars)

Rock probability map

Images: Cornell / NASA/ JPL / Caltech

NASA / Caltech / JPL / Instrument Software and Science Data Systems

Plume detection

Horizon identification approach

Original image

Edge detection finds points on the target body Illuminated material outside the "convex hull" is part of a plume

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

Onboard data analysis: reaction times

	ASE (EO-1)	HiiHAT (EO-1)	Autonav (Deep Impact)	AEGIS (MER)
	Prioritize downlink	Prioritize downlink	Trajectory updates	Target detection
Data analysis	~2hr	5hr	1.5-8h	10-20m
Trajectory Generation			10-200m	
Activity Planning	30m			2m
Followup execution	90m		1m	<1m
Total reaction time	~2-4hr M5 (Rad3000)	<mark>5h</mark> M5 (Rad3000)	2h Rad750	< <mark>25m</mark> Rad6000

Agenda

Motivation: primitive bodies operations

Critical Path Analysis and reaction time

A survey of onboard science data analysis

Case study – what could we do with onboard data analysis?

Image: Hartley 2 (EPOXI), NASA/JPL/UMD

Case study 1: Smart flyby

Simulate targets distributed randomly erosion features surface activity spectral anomalies

Enforce illumination, geometry constraints

What fraction of the time can we capture the target with followup images (high-res images, VNIR or UV spectroscopy)?

Smart flyby performance

Case 2: Plume activity monitoring

Image: J. Veverka et al., ICARUS 2012

Simulated plume monitoring campaign

3 week trajectory

1000 simulated events

J& 72012 Jion Laboratory / California Institute of Technology / NASA AMMOS

1.5

Simulated plume monitoring campaign

Fraction of plumes with targeted followup

Time duration of followup coverage

J& 72012 Jacobi Laboratory / California Institute of Technology / NASA AMMOS

Agile ops techniques across missions

		lg Ig		X	ır	er	a	ər	R	R	Ÿ
	Morphological units	х	х	Х	Х	Х	х	Х	Х	х	х
	Surface composition, mineralogy	х	х	х	х	х	х	х	х	х	х
	Localized targets (boulders, crater walls, etc)	х	х	Х	х	х	х	х	х	х	х
	Satellites	х			х						
Mission and science unknowns	Plume activity, distribution over space and time				х		х	Х	х	х	х
	Gravity field	х									
	Location of site for sampling/landing		х	х			х	х	х	х	
	Surface conditions at sample site		х	х			х	Х	х	х	
	Rotation rate and pole location	х	х	х	х		х	Х	х	х	х
	Spacecraft performance / faults	х	х	х	х	х	х	х	х	х	х
Asselle and selected	Single-cycle trajectory/observation selection	х	х	Х	Х		х	х	х	х	х
Applicable ground ops	Fast instrument data processing	х	х	х	х		х	х	х	х	х
teennologies	Fast instrument data interpretation	х	х	х	х		х	х	Х	х	х
	Trajectory replan (fault or hazard recovery)		х	х	х		х	х	x	х	х
	Observation replan (opportunistic targeting)	х	х	х	х		х	х	х	х	х
	Morphological pattern recognition	х	х	х	х		х	х	х	х	х
Applicable onboard technologies	Spectral pattern recognition	х	х	х	х		х	х	х	х	Х
	Plume/change detection						х	х	х	х	х
	Satellite detection	х									
	TRN / optical navigation for prox. ops		х	х			х	х	х	х	
	Onboard planning / execution for prox. ops		х	х			х	х	х	х	

Missions

Ros

Chiron Orb

Comet / active

CSS

Coma Samp

CNSR/CCS

Comet Hop

Asteroid / inert

OSIRIS-I

Trojan T

Conclusions

- Resilient missions should accommodate changing science objectives
- New Decadal Survey mission targets will require innovative operations strategies
- Can quantify mission flexibility using the principle of reaction time
- Technological solutions
 - Better ground-side automation and fast replanning
 - Limited transfer of authority onboard for time-critical decisions

Extra slides

Computer Vision for automatic scene interpretation

Test set performance

Image	Target	Plume present	Plume detection	√ (# pixels)	Runtime (s)
PIA02124	Tempel 1			256	0.10
PIA02125	Tempel 1			256	0.08
PIA02140	Tempel 1	Х	Х	271	0.09
PIA05571	Wild 2			370	0.21
PIA00228	Gaspra			400	0.15
PIA02123	Tempel 1	Х	Х	471	0.32
PIA03505	Borrelly	Х		500	0.32
PIA03501	Borrelly	Х		500	0.90
PIA03504	Borrelly			500	0.29
PIA02127	Tempel 1			500	0.33
PIA03500	Borrelly			500	0.29
PIA13578	Hartley 2	Х	Х	501	0.32
PIA13601	Hartley 2	Х	Х	501	0.23
PIA13600	Hartley 2	Х	Х	501	0.28
PIA13579	Hartley 2	Х	Х	501	0.31
PIA13570	Hartley 2	Х	Х	501	0.28
PIA02133	Tempel 1	Х	Х	505	0.28
PIA02134	Tempel 1	Х		623	0.37
PIA00297	Dactyl			700	0.38
PIA00069	lda			769	0.37
PIA02137	Tempel 1	Х		900	0.91
PIA00299	Dactyl			1000	0.81
PIA00118	Gaspra			1024	0.91
PIA06285	Wild 2			1165	1.40
PIA00136	Ida			1463	1.18
PIA00135	Ida			2114	4.77
PIA05004	Wild 2			2506	7.02

4&, *56-/82%, \$%18%, -.\$%14\$%

JPL

