

Mumu Xu

Ufuk Topcu, Richard M. Murray August 1, 2012

Motivation

- Hydraulic, Pneumatic, Electric
- Fault-tolerant, reliable, autonomous
- Systematic methods for design based
 - formal specifications
 - verification and validation of complex systems
- Increasing complexity
 - VMS systems designed for verification
 - Need structure to allow verification tools to be applied
 - Synthesizing "correct-byconstruction" design protocols

Electric Power System

- Generators
- APUs
- External Power
- Batteries
- Buses
 - Essential
 - Non-essential
- Loads
- Contactors
- Transformers
- Rectifier Units
- Motor Drives

Figure courtesy of Rich Poisson, Hamilton-Sundstrand. Adapted from Honeywell Patent US 7,439,634 B2

Problem Description

- Specifications: text-based to formal language
 - Safety
 - Non-paralleling
 - Essential loads must be powered
 - Contactor opening and closing times
 - Reliance
 - Priority Tables
 - Performance
 - Probability of failure

Priority	Bus 1	Bus 2	Bus 3	Bus 4
1	G_L	A_L	A_R	G_R
2	G_R	G_L	G_R	G_L
3	A_L	G_R	G_L	A_R
4	A_R	A_R	A_L	A_L

Given system specifications, design a control protocol that ensures the controlled system satisfies the specifications.

Reactive Synthesis

Given:

Open transition system

$$TS = (Q, I, \mathcal{A}_{uc}, \mathcal{A}_c, R_{nom})$$

- Q finite set of states,
- $I \subseteq Q$ set of initial states,
- \mathcal{A}_{uc} set of uncontrollable input actions
- A_c set of controllable input actions
- $R_{nom} \subseteq Q \times \mathcal{A} \times Q$ transition relation

Assume-guarantee type temporal logic specification

$$\varphi = \varphi_e \to \varphi_s$$

Compute: A strategy $f: (q_0, e_0, u_0, \cdots, q_{i-1}, e_{i-1}, u_{i-1}, q_i, e_i) \mapsto u_i$ with $(q_i, e_i, u_i, q_{i+1}) \in R_{nom}, \ \forall i \geq 0$ such that any controlled execution satisfies the specification.

Formal Specification and Synthesis

- Linear Temporal Logic
 - Safety
 - Progress
 - Response

GR(1) Reactive Synthesis

$$\varphi = (\varphi_e \to \varphi_s)$$

$$\varphi_\alpha := \varphi_{\text{init}}^\alpha \wedge \bigwedge_{i \in I_1^\alpha} \Box \varphi_{1,i}^\alpha \wedge \bigwedge_{i \in I_2^\alpha} \Box \Diamond \varphi_{2,i}^\alpha$$

Electric Power System

- Variables
 - Environment: G_L , A_L , A_R , G_R (healthy, unhealthy)
 - Controlled: C₁- C₇ (closed, open)
 - Dependent: B₁- B₄ (powered, unpowered)

Given any admissible environment actions, determine all sets of contactor configurations (and transitions) such that system will satisfy all specifications

Formal Specifications

1. Direction – no parallel

Environment Assumption

$$\square\{(G_L=1) \lor (A_L=1) \lor (A_R=1) \lor (G_R=1)\}$$

Power Status of Buses

$$\Box\{((C_1 = 1) \land (G_L = 1)) \to (B_1 = 1)\}$$

$$\Box\{((B_2 = 1) \land (C_3 = -1)) \to (B_1 = 1)\}$$

$$\Box\{\neg((C_1 = 1) \land (G_L = 1)) \lor ((B_2 = 1) \land (C_3 = -1)) \to (B_1 = 0).\}$$

No Paralleling of AC Sources

$$\Box\{\neg(G_L = 1) \to \neg(\tilde{C}_3 = 1)\}
\Box\{\neg(((G_L = 1) \land (B_2 = 1)) \lor ((B_3 = 1) \land (B_2 = 1))) \to \neg(\tilde{C}_3 = -1) \}
\Box\{\neg((C_2 = 1) \land (C_3 = 1))\}
\Box\{\neg((C_2 = 1) \land (C_4 = -1))\}
\Box\{\neg((C_3 = 1) \land (C_4 = -1))\}$$

Essential Buses

$$\Box\{(B_1 = 0) \to (\bigcirc t_1 = t_1 + 1)\}$$

$$\Box\{(B_1 = 1) \to (\bigcirc t_1 = 0)\}$$

$$\Box\{t_1 \le 5\}$$

Disconnect Unhealthy Buses

$$\Box\{(G_L = 0) \to (\tilde{C}_1 = 0)\}$$

$$\Box\{((G_L = 0) \land (A_L = 1)) \to (\tilde{C}_2 = 1)\}$$

8

Summary/Ongoing Work

- Single-line diagram of an electric power system
- Converted text-based requirements into formal specification language
- Synthesized central and distributed controllers
 - Timing and interface constraints
- Implementation of cost function vs. priority tables
- Scalability: synthesize for entire system (large-scale)
- Better integration with time
 - Timed temporal logic
 - "On-the-fly" synthesis

Acknowledgements

- Rich Poisson (Hamilton-Sundstrand)
- Multi-Scale Systems Center (MuSyC)
- The Boeing Corporation
- Necmiye Ozay (Caltech)