

Detecting the Unexpected: An Introduction to Anomaly Detection Methods

Kiri Wagstaff Jet Propulsion Laboratory, California Institute of Technology May 20, 2019 KISS Technosignatures Workshop

Image credit: NRAO/AUI/NSF

CL#19-2811

© 2019, California Institute of Technology. Government sponsorship acknowledged. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

What is an Anomaly?

Sloan Digital Sky Survey

What is an Anomaly?

Sloan Digital Sky Survey

Technosignatures – What are we looking for?

- "Any sign of technology that is not also a biosignature"
 - SETI Nomenclature
 - "... that modifies its environment in ways that are detectable ..." [Tarter, 2007]
- Challenge: human technosignatures pollute the data

Example: Fast Radio Bursts

Anomaly Types

- Both major anomaly types are valuable
- Each leads to different follow-up actions

Anomaly Types

- Both major anomaly types are valuable
- Each leads to different follow-up actions

Anomaly Types

- Both major anomaly types are valuable
- Each leads to different follow-up actions

Automated Methods for Finding Anomalies

- 1. Easily distinguished events
- 2. Events that fall outside "normality"
- 3. Difficult-to-model events

(1) Easily distinguished events

- Statistics/probability
 - Assume Gaussian (or other) generating distribution
 - Outlier: >3 sigma from mean
 - Hypothesis tests: Student's t-test, χ^2 -test
- Distance/density
 - Examples
 - K Nearest Neighbor
 - Local Outlier Factor (LOF): ratio of local density to neighbors' density
 - Clustering
 - Methods often do not scale well to high dimensional data or large data sets (although some efficiency improvements exist)

-2

-4

true inliers

(KNN)

K Nearest Neighbors

SDSS galaxy outliers: Local Outlier Factor (LOF)

Elongated galaxies, multiple objects and colors

(1) Easily distinguished events

- Isolation Forest [Liu et al., 2008]
 - Each decision node picks a random feature and a random value to split data

(1) Easily distinguished events

- Isolation Forest
 - Score: ease with which a random forest isolates the event

Two clusters

SDSS galaxy outliers: Isolation Forest

Bright, large, diffuse galaxies with single primary color

(2) Events that fall outside "normality"

- Build model of "normality" and score items by their distance to model
 - One-class SVM [Schölkopf, 2001]: learn a tight boundary around all training data and flag items that fall outside

SDSS galaxy outliers: One-class SVM

Smaller, variable shape galaxies

(3) Difficult-to-model events

- Build a model of "normality" and score events by content that can't be modeled (reconstructed)
 - Principal Component Analysis (PCA) or Singular Value Decomposition (SVD)
 - Autoencoder or replicator network
 - Self-organizing map (SOM)

SDSS galaxy outliers: SVD

Heterogeneity of colors, sizes, and number of objects

Explanations for Anomalies

- Final explanation comes from human interpretation
 - "The search for unexpected behaviour in data is presently not completely automated, since interpreting such signals requires human judgement." [Wheeler and Kipping, 2019]
- Understanding the anomaly
 - 1. Why was a given item chosen as an anomaly? (algorithm explanation)
 - 2. How does it compare to other items in the data set? (contextual explanation)
 - This is an active area of research in the machine learning community
- Gathering more information
 - 1. What does it look like in other views? (complementary observations)
 - 2. What does it look like if we observe it again? (follow-up observations)

Reconstruction-based Explanations

- Dark Energy Survey (DES) galaxies (n = 11.9M)
 - Observe with *r*, *i*, *g*, *z* bands

With Eric Huff and Umaa Rebbapragada

Reconstruction-based Explanations

- Green Bank Telescope (GBT) observations of Kepler field
 - Capture radio pulse detections with SNR > 10 (n = 21,430)
 - Frequency range: 1420 +/- 30 MHz (hydrogen 21-cm line)

Summary

- Definition of "anomaly" or "outlier" is context-dependent
 - Context = prior knowledge and distribution of data collected
- 2. Anomaly types
 - Data or measurement artifacts
 - Scientifically interesting potential new discoveries

- 3. Existing methods look for:
 - Easily distinguished events
 - Events outside of "normality"
 - Difficult-to-model events
- 4. After finding anomalies, don't stop there
 - Methods that provide explanations help guide interpretation and understanding of anomalies

Useful References

- Pimentel et al. (2014) "A review of novelty detection," Signal Processing, 99:215-249
- Chandola et al. (2009) "Anomaly detection: A survey," ACM Computing Surveys, 41(3):Article 15
- Software: PyOD: Python Outlier Detection
 - https://github.com/yzhao062/pyod
 - Zhao, Y., Nasrullah, Z. and Li, Z. (2019) "PyOD: A Python Toolbox for Scalable Outlier Detection," arXiv preprint arXiv:1901.01588 (accepted to *JMLR*)