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Remember ...

There is No Such Thing as Doing
Interesting Science on Titan
(Physics, Chemistry, Geology
Biology, etc.) ...
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Without a Robust Electronics
Infrastructure!
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A Personal Mandate:

We Need to Get Rid of That
Darn Warm Box!
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HOW?|
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Low-T Operation S Tech o oy &

* Pro’s for Cooling Electronic Devices and Circuits:
- mobility increases (depends on doping)
- current drive increases
- saturation velocity increases
- latchup iIn CMOS improves (BJT gain drops)
- thermally-activated failure mechanisms improve (e.g., electromigration)
- subthreshold swing and transconductance improve

« Con’s for Cooling Electronic Devices and Circuits:
- carrier freeze-out can become an issue (depends on doping)
- breakdown voltages degrade
- hot carrier effects much stronger and can lead to major reliability issues
- heavy ion induced latchup in CMOS looks like a possibility (2010)
- TCAD simulation and compact modeling is a real challenge
- testing is painful
- cycling presents issues for electronic packaging
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Assumptions:
- foundry supported (commercially available via MPW)
- low cost
- must support high levels of integration (e.g., mixed-signal SoC)
- can enable robust operation of complex electronics at 93K

Technology Options / Comments:

 Bulk Si CMOS
- most performance metrics improve with cooling
- cryo-T hot carrier lifetime is a serious issue to address
- best for digital; okay for analog/RF

e Bulk SiGe BICMOS
- SiGe HBT performance improves with cooling (across board)
- no issue with SiGe HBT cryo-T reliability
- CMOS here has the same pro’s/con’s as for bulk CMOS
- BICMOS gives optimal division of labor for analog/RF/digital
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« CMOS Devices Function Well Down to 43 K
* Device Performance Improvement with Cooling (9,,, 4, S)
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CMOS Reliability
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* |y IS @ Good Monitoring Parameter for HCE
« After Stress, |, and g, Decrease While V; and S Increase
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 Lifetime Decreases with Cooling at Fixed L

 Lifetime Decreases With L at Fixed T (Mitigation Path)
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e Conventional Shallow and Deep Trench Isolation + CMOS BEOL
 Unconditionally Stable, SiGe Epitaxial Base Profile
 100% Si Manufacturing Compatibility E B C

* SiGe HBT + Si CMOS on wafer ~ #10's__ 5
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SiGe = lllI-V Speed + Si Manufacturing
Win-Win!
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 Apparent Convergence of SiGe and IllI-V on Johnson Curve
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SiGe HBTs at Cryo-T G@e{ﬁgr;gclﬁtﬂmm@%g%%ﬁ@A
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Cryogenic SiGe LNAs L e Ly &

X-band LNA Operation at 15 K (Not Yet Optimized!)

e T <20 K (noise T) 35

e NF<0.3dB 30'_

e Gain >20dB :

e dc power <2 mW 257 NFE = 0.3 dB!
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Collaboration with S. Weinreb, Cal Tech This SiGe LNA is Also Rad-Hard!
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Operation at Sub-1K!

e SiGe HBT Works Just Fine Down to 300 mK!

» SiGe Bandgap Reference Circuit Also Works! (700 mK)
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SiGe HBT Reliability

* SiGe HBT Reliability Fine at Cryo-T
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The X-33 The ETDP SiGe Remote

Remote Health : .
Unit. BAE Electromc‘:s‘le, 2010

Systems, REU in a
circa 1998

package!

SiGe Analog

front end die I Sclc();netr[(;llgclltii:'II
] "=
Specifications Our SWAP Goals
e 5"x3"x6.75"=101in3 e 15"x15"x0.5"=1.1in3 (100x)
e 11Kkg « <1Kkg(10x)
e 17 Watts o <2 Watts (10x)
e -55°C to +125°C mm) - -180°C to +125°C, rad tolerant

Supports Many Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This SiGe REU as a Remote Vehicle Health Monitoring Node
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Major Advantages:

* Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
 Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
« Commonality (easily adapted from one system to the next)

18



Georgia hstitute
Some Thoughts / Ideas = Techno ooy &

 We now know how to build robust, reliable, complex
mixed-signal (analog, digital, RF) electronics to operate at
Titan temperatures

 We can provide warm-box free “electronic suites” for a
wide class of instrument / sensor / control / comm needs
that can provide dramatic reductions in SWAP

Complex On-Surface Electronics
analog, digital, RF, power, etc.

<1.0in?

<100¢g

< 1-2 W for electronics SYSTEMS

Read: Environmental Invariance (e.g., 90 K)
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* Old Idea: one big, heavy, power hungry science package
with lots of instruments drops to the surface

 New Idea: identify a “few” (or lots!) target science
sensor/instruments (e.g., lab on a chip) that can be
packaged at small size and low power and then deploy a
“platoon” of such small environmentally invariantscience
packages by parachute to the surface (land and lake -
boat with a sail?), each of which have low-power RF links
(operating at ambient) for comm from package-to-package
or package-to-balloon or package-to-orbiter

* Design small science packages to run off batteries for
“long” duration operation, and perhaps even enabled
to scavenge energy if desperate (beam RF from orbiter?)
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