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® Low mass, volume, and power requirements (@amenable to
robotic explorers)

Why choose lab-on-a-chip for spaceflight applications?

® Fluid motion driven by electric fields or very small pressure

differentials (i.e. no pump)

Extremely sensitive
>0

Addresses key NASA agency goals
—~>® Requires very little sample (less than a drop)

Key Questions for this workshop:

e How is sample handling done on Titan, and how
\. does this affect the sample and analysis protocol?

What are the specific science goals?
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® lab-on-a-chip instruments could be designed to function
autonomously on the surface of other planets.

Titan

®  For Titan deployment, liquid could be sipped directly from
lakes or processed from sediment and analyzed on-chip



Figure 1. of (Successful) ASTID Proposal &

“Lab-on-a-Chip System Development for Titan Exploration”
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Fluorocur PFPE Pumps @’
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Fully Automated
Fluidic Bus Layout
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How uCE Works Sample Plug

Cathode Cathode
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Laser Induced Fluorescence Detection of Labeled Amino Acids
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Micro-capillary
electrochromatography

(MCEC)

Anode Reservoir
r\

Sample Reservoir Waste Reservoir
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Electroosmotic Flow of Sodium Tetraborate Buffer [5SmM] as
a Function of Electric Field for 3 Different pH Solutions
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50 100 150 200 250 300 350
Time (s)

Surface interactions with solid phase filling channels
enables separations of neutral species
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Where we are going: uCEC of PAHs

And CHIRAL resolution
‘ ’ of amino acids
o‘ A
And Sending Everything
into a Mass
C?OQQO Spectrometer

Figure 4. Structures of the PAHs: (1) napnthalens, (2) acenaphthalene, (3) acenaphthene, (4) fluorene, (5) phenanthrene, (8) anthracene,
(7) flucranthene, (B) pyrene, (9) benz[alanthracene, (10) chrysene, (11) benz{bifluoranthene, (12) benzo[kiflucranthane, (13) benzo{sjpyrens,
(14) dibenz[a,hanthracene, (15) benzo[ghilperylene, and (16) indeno(!,2,3-cd|pyrene.
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Figure 5. Electrochromatographic separation of 16 PAHs on the butyl stationary phase in 75:25 viv acetonitnie/5 mM tris, pH B, at field
strength of B33 Vicm.

Ngola et al., Anal. Chem. 2001, 73(5) pp 849-856. May 25, 2010



Extra Slides
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Interfacing Lab-on-a-Chip With Mass Spectrometry

® Label-free detection/identification of analytes

Electrospray Process

_ Glutamic
Valine Acid
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Mass spectrum of five amino acids produced via
nanoelectrospray ionization of methanol/water solution

300nL/min

30/70 water/acetonitrile
or 50/50 water/methanol
1.4-3.0 kV bias
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New LC-MS
system




Note: all sprays
so far have been
driven by
mechanical or
pneumatic
pressure, and
have been pure
samples






Extra Slides: Mars Analyses
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demonstrated prototype operation in Mars , , : , : ,
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A.M. Skelley, A.D. Aubrey, P.A. Willis, X. Amashukeli, P.

. . ) Ehrenfreund, J.L. Bada, F.J. Grunthaner, and R.A. Mathies, J.
differentiated between high and low Geophys. Res., 2007, 112, G04S11, DOI:

concentration organic samples 10.1029/2006JG000329 May 25,2010 17



Phoenix Analogue &
s Experiment

MARTIAN ANALOGUE SAMPLE

We prepared a sample containing the soluble salts

_ _ N reported by the Phoenix Lander. We also included an
Red soil sample. Assumes delivery of a 1em* sample ionic sulfate species**. Sample was spiked with 1uM Trp

with density of 1g/cm3. amino acid (200 ppb).

lonic Concentration in Est %owt lonic Concentration in
Speues Cell, mM Species Analogue, mM

RESULTS FROM PHOENIX MARS LADER

Measured concentrations of ionic species in Rosy

2.9 (+1) MgSO,
Ca2+ 0.6 (£0.3) 3-5% Ca2+ 0.6 CaCl,
Na* 1.4 (£0.5) 0.10 Na* 2.6 NaClO,
K* 0.4 (x0.2) 0.03 K* 0.4 KCI
clo, 2.6 (+1) 0.75 clo, 2.6 NaClo,
Cl- 0.6 (x0.2) 0.04 Cl- 1.6 KCI, CaCl,
S0, 2.9 MgSO,
pH 7.7 (£0.3) Total 6.5

**Presence of sulfates in the Martian regolith has
been reported by analysis of data from MOC, OMEGA,

. .
From TEGA Analysis MER Opportunity , MSG TES instruments



Offset Y values

Phoenix Analogue Experiment &

(Preliminary Data)

— 100% Phoenix Analogue
Significant finding: electrospray 200% Phoenix Analogue
MS tolerated mM salc — 500% Phoenix Analogue

concentration in buffer -- *Analogue composition modeled after Hecht M. H., et al.
Tryptophan wa.s detectable even “Detection of perchlorate and the soluble chemistry of Martian
300000 at the parent ion mass/charge. soil at the Phoenix lander site”, Science 325, 64-7 (July 2009)
with addition of sulfates.
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We need to do MS-MS analysis
underway to determine what these

peaks are May 25, 2010



