Intro to Soil Mechanics:
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The What?
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What is Soll
Mechanics?
erdbaumechanik

The application of the laws of
mechanics (physics) to soils as
engineering materials

Karl von Terzaghi is credited as
the father of erdbaumechanik
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clays & silts

sands & gravels




The Why?
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Sandcastles what holds them up?
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Palacio de Bellas Artes f |
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MGXICO, DE uniform se
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The leaning tower of
Pisa

differential settlement

Thursday, June 23, 2011

Vad



Teton dam
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Niigata earthquake
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levee failure

New Orleans
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MER: Big Opportunity
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The How?
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Topics in classic Soll Viechanics

* I[ndex & gradation

e Soil classification

e Compaction

 Permeability, seepage, and effective stresses
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e Consolidation and rate of consolidation

e Strength of soils: sands and clays
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Index & gradation

soll mass Is a collection of particles and
voids in between (voids can be filled w/ fluids or air)

solid particle

fluid (water) ~ —ach phase
has volume
and mass

gas (air)

Mechanical behavior governed by phase interaction
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Index & gradation

Key volumetric ratios

Vi
¢= 5 [0.4,1] sand
> [0.3,1.5] clays
_ W
L7 0,1]
Vi
S =—
V., 10,1]

z$

solid
water+air=voids

Key mass ratio

w =

M

<1 for most soils

® >5 for marine, organic

Key link mass & volume
p=M/V
moist, solid, water, dry, etc.

ratios
characte

used Ir

rlze SOl

poractice to
S & properties
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Gradation & classification

sands &
gravels

clays &

f 1
= ; sSilts

® can see grains ® cannot see grains
® mechanics~texture ® mechanics~water
® 0>0.05 mm ® 0<0.05 mm

L —— E— R—

Soils are currently classified using USCS (Casagrande)
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Fabric In coarsely-grained soils

“loose packing”, high e ] | Vs,
| relative e = —

“dense packing’, low e V.

enq. dreatest possible, loosest packing
€min |lOwest possible, densest packing

ID — €Cmax —€

Emax —Emin

strongly affects engineering
behavior of solls
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(b) Dense
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Typical problem(s)xb
IN Soil Mechanics

e Compact sand fill

e Calculate consolidation of clay

e Calculate rate of consolidation

e Determine strength of sand

| SAND FILL
e Calculate F.S. on sand (failure?)

e Need: stresses & matl behavior

ROCK (UNDERFORMABLE, IMPERMEABLE)
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Modeling tools
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Theoretical
framework

e continuum mechanics
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Theoretical
framework

e continuum mechanics

balance of mass

|

¢

Z5' . —  —\/ .
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lV'@—l-’Y = 0 I

balance of momentum
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Theoretical
framework

q — k-Vh <« darcy
./ .
O — Cep . € «<— hooke

k permeability tensor

controls fluid flow
cP
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Theoretical
framework

e computational inelasticity
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Theoretical
framework

® Displacement node
® Pressure node
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Finite Element Method (FEM)

e Designed to approximately solve PDE’s
e PDE’s model physical phenomena
e Three types of PDE'’s:
e Parabolic: fluid flow

e Hyperbolic: wave egn

e Elliptic: elastostatics
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—M recipe

Strong from

Weak form
Galerkin form

Matrix form




Multi-D deformation with FEM

0 in ) <«— equilibrium
g only<«— eg., clamp
h onl') «— e.g., confinement

Constitutive relation:
givenu =) get o

e.g., elasticity, plasticity
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Modeling Ingredients

1. Set geometry
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Modeling Ingredients

. Discretize domain
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3. Set matl parameters
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4. Set B.C.’s
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FEM Program

TIME STEP LOOP

ITERATION LOOP

ASSEMBLE FORCE VECTOR
AND STIFFNESS MATRIX

ELEMENT LOOP: N=1, NUMEL

GAUSS INTEGRATION LOOP: L=1, NINT

constitutive
model

CALL MATERIAL SUBROUTINE

CONTINUE

CONTINUE

CONTINUE
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Material behavior: shear strength

* Particle shape & size —ngineers have developed
models to account for most
of these variables

e (Grain size distribution

e Particle surface roughness

o Water —lasto-plasticity
framework of choice
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A word on current characterization methods

Direct Shear Triaxial ) 4

| toonc I L,
- ke o | e
Pros: cheap, simple, fast, Pros: control drainage & stress
good for sands path, principal dir. cnst.,
Cons: drained, forced failure, more homogeneous
Nnon-homogeneous Cons: complex

Thursday, June 23, 2011



Material models for
sands should capture

e Nonlinearity and irrecoverable
deformations
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Material models for
sands should capture

¢ Pressure dependence 200
191 kPa
241

310
380

> * + O

100

q (kPa)

200 300
-p’ (kPa)

|
0 100
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Material models for
sands should capture

¢ Difference tensile and
compressive strength

+ Loose sand ¢ Dense sand
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Material models for
sands should capture

¢ Relative density dependence

(kPa)

Ga_GI'

e, (70)

1000+

800 1

600

—— Dense Sand
—— Loose Sand

___a
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Material models for
sands should capture

e Nonassociative plastic flow

Yield Function

Plastic Potential

Flow vector
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—lasto-plasticity in one slide

Hooke’slaw o = c®P : €

Additive decomposition of strain € = €° + €
Convex elastic region & o, a) = 0

Non-associative flow €° = g, g :=0G) 0o

K-T optimality AF =0

NH = —-0F/0a - &

1
c?P=c"——c":g® f:c,

Y=H—qg:c":f




—Xamples
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—xample of elasto-plastic model
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® Displacement node
© Pressure node
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Plane-strain liguefaction numerical simulation
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(a) Pore Pressure (in kPa)
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