141ii

Surface Interaction Modeling Engineering Methods

Karl lagnemma, Ph.D. Massachusetts Institute of Technology

Terramechanics

- Terramechanics
 - Engineering science that studies the interaction between vehicles and (deformable) terrain
- Soil mechanics and vehicle mechanics
- Analysis of wheeled, tracked, legged systems

Шiī

An Engineer's Job

- Design vehicle for robust mobility on Mars surface
 - Wheels, tracks, legs?
 - Number, diameter and width?
 - Required nominal torque?
 - Required peak power?
 - Obstacle crossing performance?
 - Suspension configuration?
 - Steering mechanism?
- How to address in a principled, systematic fashion?

NASA's Mars Science Laboratory (MSL) Design/Test Model (DTM) in the sandy Mars Yard at JPL

An Engineer's Reality

- How to model this scenario?
 - High sinkage
 - High slip ratio
 - Material transport effects
 - Clogged grousers
 - Variables of interest
 - Soil properties
 - Soil state
 - Wheel load
 - Wheel geometric properties
 - Wheel linear and angular velocity

Opportunity Maneuvers out of Sand Trap

IIIii

Terramechanics

- Limitations of terramechanics modeling
 - Attempt to model all soil types with single set of relations
 - Frictional soils, crusty materials, clay
 - Assumption of homogeneity
 - Attempt to apply (semi)-empirical models in predictive manner
 - Little consideration of off-nominal operation
 - Difficulty in employing quasi-static models for dynamic simulation
- Assertion: General approach remains valid
 - Not all limitations are fundamental
- Goals
 - Understand limits of applicability of terramechanics
 - Identify areas requiring new research

Terramechanics Principles

- Fundamental relations
 - Pressure-sinkage
 - Shear stress-shear displacement
 - Wheel slip
- Other effects
 - Grousers/lugs
 - Lateral forces
 - Repetitive loading
- Limitations
 - Inhomogeneity
 - Scale effects
 - Slipping and sinking

	\frown	\checkmark	\mathcal{I}
6	Watc	hout for	À
\succ	those ass	umptions!	Y
	\sim	2	
Ę	- <u>}</u>		
	J. J.		
175T			
6			
	11 T		

M.G. Bekker

l'Ilii

Terramechanics Principles

- Fundamental relations
 - Pressure-sinkage
 - Shear stress-shear displacement
 - Wheel slip
- Other effects
 - Grousers/lugs
 - Lateral forces
 - Repetitive loading
- Limitations
 - Inhomogeneity
 - Scale effects
 - Slipping and sinking

 Pressure-sinkage relationship for geomaterials

$$\sigma = kz^n$$

- $-\sigma$ is normal pressure
- k is empirical constant
- -z is sinkage from free surface
- Bekker proposed semiempirical formulation

Cohesion-dependent soil coefficient

Pressure-Sinkage

load

Friction-dependent soil coefficient
$$\left(\frac{k_c}{b} + k_{\phi}\right) z^n$$
 Sinkage exponent

 σ_n

l'llii

Pressure-Sinkage for Wheels

• Can compute normal stress for wheels along terrain interface

$$\sigma_{nf} = \left(\frac{k_c}{b} + k_\phi\right) \left[R\left(\cos(\theta) - \cos(\theta_e)\right)\right]^n \qquad \qquad \theta_m < \theta \le \theta_e$$

<u>|||i7</u>

Pressure-Sinkage for Wheels

 \mathcal{Z}

 θ_b

 θ_e

 σ_n

 θ_m

- Sinkage plays critical role in mobility
 - Increased sinkage causes increased motion resistance
 - Energy lost in terrain compaction
- Sinkage can be divided in two components
 - Static sinkage
 - Dynamic sinkage (or slip-sinkage)

Pliī

Pressure-Sinkage for Wheels

 R_u

 \mathcal{Z}

 θ_b

 θ_e

 σ_n

 θ_m

- Sinkage plays critical role in mobility
 - Increased sinkage causes increased motion resistance
 - Energy lost in terrain compaction

l'Ilii

Terramechanics Principles

- Fundamental relations
 - Pressure-sinkage
 - Shear stress-shear displacement
 - Wheel slip
- Other effects
 - Grousers/lugs
 - Repetitive loading
 - Lateral forces
- Limitations
 - Inhomogeneity
 - Scale effects
 - Slipping and sinking

Shearing Properties of Soil

- Motion of a wheel or track causes shearing at the soil interface
 - Resistance forces generated by soil mass
 - Depends on slip, loading conditions

Figure 2.20: Flow patterns and soil wedge formed in front of a locked rigid wheel at 100% skid in sand

I Instantaneous centre

Figure 1.12: Soil flow under the action of growers of a wheel in sand (Reprinted by permission of ISTVS from Woret al., 1984)

Shearing Properties of Soil

- Shear stress at wheel-soil interface produces traction
- Shear stress is a function of shear displacement
 - Relative motion required to generate traction
 - Non-zero slip ratio
- Soil failure estimated through Mohr-Coulomb failure criterion

 $\tau = c + \sigma \tan \phi$

- $-\tau$ is failure stress
- c is soil cohesion
- $-\phi$ is soil internal friction angle

۲

Shearing Properties of Soil

- Can compute shear stress at wheel-terrain interface
 - Janosi-Hanamoto formulation Soil shear displacement Limit tangential stress $\tau_x(\theta) = \tau_{max} \stackrel{\downarrow}{\left(1 - e^{\frac{-j_x}{k_x}}\right)}$ Soil shear deformation modulus $\tau_{max} = c + \sigma_n(\theta) \tan \phi$ R_u^{\searrow} θ_b Soil shear displacement \mathcal{Z} $ert heta_m$ $j_x(\theta) = \int_{\theta_e}^{\theta_e} R_u [1 - (1 - s_d) \cos(\theta)] d\theta$ au_x 15

Z. Janosi and B. Hanamoto. Analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soils, Proc. ISTVS

141ii

Slip Ratio

- Slip ratio is measure of relative motion between wheel and terrain surface
 - For driven wheel, distance traveled is less than that in free rolling
 - When slip ratio = 1, spinning in place
 - When slip ratio = 0, pure rolling
 - When slip ratio = -1, skidding

l'lii

Terrain Interaction Forces

 \boldsymbol{z}

R

 θ_b

 au_x

- Forces between wheel and terrain can be computed from stress distribution along contact path
- Vertical load

$$W = bR \int_{\theta_b}^{\theta_e} \tau_x(\theta) \sin(\theta) + \sigma_n(\theta) \cos(\theta) d\theta$$

Longitudinal force

$$F_x = bR \int_{\theta_b}^{\theta_e} \tau_x(\theta) \cos(\theta) - \sigma_n(\theta) \sin(\theta) d\theta$$

• Torque on wheel axle $T = bR^2 \int_{\theta_b}^{\theta_e} \tau_x(\theta) d\theta$ σ_n

 $heta_e$

 θ_m

|**|**|ii

Summary

- Stresses at wheel-terrain interface
 - Decompose into normal and shear stresses
 - Modeled with semi-empirical formulations
 - Integration yields forces acting on vehicle
- Given
 - Terrain properties
 - Slip
 - Loading conditions
- Can compute
 - Sinkage
 - Thrust
 - Required torque

20

Şlip

n

Terramechanics Principles

- Fundamental relations
 - Pressure-sinkage
 - Shear stress-shear displacement
 - Wheel slip
- Other effects
 - Grousers/lugs
 - Lateral forces
 - Repetitive loading
- Limitations
 - Inhomogeneity
 - Scale effects
 - Slipping and sinking

	\sim	
(5
7	Watchout for	X
\searrow	those assumptions!)
		\mathcal{Y}
\prec	m /	
ſ	En ju	
یکم ا	ىرىپ	
- A	y.	
and		
N/S		
	* 2	
0		
		10

l'lii

and

Effect of Grousers

- Grousers are small features on wheel surface
 - Designed to improve traction and climbing performance
- Have been modeled through
 Terzaghi's bearing capacity theory

Pathfinder, MER, and MSL wheels

The value of the force P_{μ} assumed for $\mu = 0$ may be calculated by integrating the pressure σ_{μ} determined by equation (134):

$$P_p \mapsto \int_0^b \sigma_p \, dz = \int_0^b (g \, N_0 + 2\varepsilon \, \sqrt{N_0} + \gamma z \, N_0) \, dz$$

$$P_P := q \hbar N_{\mathbf{g}} + 2c \hbar \sqrt{N_{\alpha}} + \frac{1}{2} \gamma \hbar^2 N_{\alpha}$$
 .

20

l'lli7

Effect of Grousers

- Grouser effect has also been empirically studied
 - Grouser height, spacing, geometry affect torque, traction, turning performance

Illii

Lateral Forces

- Lateral forces act on wheel sidewall during turning
 - Forces arise from soil shearing and bulldozing

Illii

Lateral Force - Bulldozing

 Like grouser effect, bulldozing is typically modeled through soil bearing capacity analysis

$$\sigma = \gamma z N_\gamma + c N_c + q N_q$$
 [Pa]

• N-factors are function of soil angle of internal friction $N_{\gamma} = \frac{2(N_q + 1)\tan\phi}{1 + 0.4\sin4\phi} \quad N_c = \frac{N_q - 1}{\tan\phi} \quad N_q = \frac{e^{(1.5\pi - \phi)\tan\phi}}{2\cos^2(\pi/4 + \phi/2)}$

Mii

- Rover trailing wheels may pass through soil deformed by leading wheels
 - Repetitive loading alters soil behavior
 - Increases compaction (relative density)

Repetitive Loading

24

llii

Repetitive Loading

 Multi pass can be modeled by modifying soil parameters according to number and type of passes ——> Wheel slip of

Terramechanics Principles

- Fundamental relations
 - Pressure-sinkage
 - Shear stress-shear displacement
 - Wheel slip
- Other effects
 - Grousers/lugs
 - Lateral forces
 - Repetitive loading
- Limitations
 - Inhomogeneity
 - Scale effects
 - Slipping and sinking

($\overline{}$
$\left(\right)$	Watch out for those assumptions!	, , }
Ç		\mathcal{A}
Ę	E.J.	
- C		
175		
R		
	Æ.e	
Stor.		20

Mii

Classical Model Limitations

- Terramechanics developed in context of large vehicles, for design trade space analysis
 - Would like to apply to smaller, lighter systems, for dynamic sim

• Key limitations

- Effect of terrain inhomogeneity
 - Soil condition dependence
 - Layering, relative density, moisture content
- Scale effects
 - Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
 - Slip ratio definition
 - Rate dependence

Terrain Inhomogeneity (1)

16

Mii

Classical Model Limitations

• Terramechanics developed in context of large vehicles, for design trade space analysis

- Would like to apply to smaller, lighter systems, for dynamic sim

• Key limitations

- Effect of terrain inhomogeneity
 - Soil condition dependence
 - Layering, relative density, moisture content
- Scale effects
 - Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
 - Slip ratio definition
 - Rate dependence

Illii

Terrain Inhomogeneity

- Pressure-sinkage relation characterizes wide range of terrains with single equation
 - Loose, granular soils, crusty materials, clay

$$\sigma_n = \left(\frac{k_c}{b} + k_\phi\right) z^n$$

- Observations: significant experimental variation wrt soil condition
 - Layering
 - Relative density
 - Moisture content

Terrain Inhomogeneity (1)

- Bekker theory assumes homogenous soil
 - Soil is often layered, inhomogeneous
- Lack of analytical formulations for pressure-sinkage, shear stress-shear deformation

I4117

Terrain Inhomogeneity (1)

• Pressure-sinkage relations

$$\sigma_{nf} = \left(\frac{k_c}{b} + k_{\phi}\right) \left[R\left(\cos(\theta) - \cos(\theta_e)\right)\right]^n$$

$$\sigma_{nr} = \left(\frac{k_c}{b} + k_{\phi}\right) \left[R\left(\cos\left(\theta_e - \left(\frac{\theta - \theta_r}{\theta_N - \theta_r}\right)(\theta_e - \theta_N)\right) - \cos(\theta_e)\right)\right]^n$$

 $\sigma_n = \left(\frac{k_c}{1} + k_{\phi}\right) z^n$

How to define?

• Shear stress-shear displacement

Terrain Inhomogeneity (2)

- Bekker theory (generally) ignores soil state
- Large vehicles tend to compact terrain to dense state upon passage
 - For small rovers, weight is insufficient to compact soil
- Relative density can strongly influence shear stress at interface
 - Strong influence on thrust
 - Strong influence on torque during digging/scooping

Shear box test of MMS

Terrain Inhomogeneity (2)

- Bekker theory (generally) ignores soil state
- Large vehicles tend to compact terrain to dense state upon passage
 - For small rovers, weight is insufficient to compact soil
- Relative density can strongly influence shear stress at interface
 - Strong influence on thrust
 - Strong influence on torque during digging/scooping

34

141ii

Terrain Inhomogeneity

- Questions (Solutions?)
 - How to compute sinkage in inhomogeneous soil?
 - Express sinkage in integral form (layered)?

$$\sigma_n = \left(\frac{k_c}{b} + k_\phi\right) z^n$$

- Effective parameters for mixed soils?
- How to compute failure of layered (crusty) soil?

 $\tau_{max} = c + \sigma_n(\theta) \tan \phi$

- Piecewise formulation?
 - Smoothness of stress distribution?
- How to represent parameters?
 - Intervals? Distributions?
 - State dependent? (For all soils, or only some?)
- How to represent governing equations?
 - Deterministic? Stochastic?

Mii

Classical Model Limitations

• Terramechanics developed in context of large vehicles, for design trade space analysis

- Would like to apply to smaller, lighter systems, for dynamic sim

• Key limitations

- Effect of terrain inhomogeneity
 - Soil condition dependence
 - Layering, relative density, moisture content
- Scale effects
 - Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
 - Slip ratio definition
 - Rate dependence

- Reasonable for large vehicles
 - Uniform stress distribution at interface

- Pressure-sinkage relations developed under flat plate assumption $\sigma_n = \left(\frac{k_c}{b} + k_{\phi}\right) z^n$ Undisturbed soil surface d_{σ_n}
- What about for small vehicle, with high wheel curvatures?
 - Stress distribution at interface nonuniform
 - Component of normal stress balances load

Шii

- Result: Poor prediction
 of sinkage
- Why is this?
 - Intrinsic parameters not really intrinsic

$$\sigma_n = \left(rac{k_c}{b} + k_\phi
ight) z^n$$

|||ii

Scale Effects (2)

• Soil shear failure is governed by soil cohesion and internal friction angle

 $\tau_{max} = c + \sigma_n(\theta) \tan \phi$

- Cohesion often measured at high normal stress
 - At low normal loads, effect of cohesion can dominate

14111

Scale Effects (2)

• Soil shear failure is governed by soil cohesion and internal friction angle

$$\tau_{max} = c + \sigma_n(\theta) \tan \phi$$

- Cohesion often measured at high normal stress
 - At low normal loads, effect of cohesion can dominate

|||ii

Scale Effects

- Questions (Solutions?)
 - Can we formulate terramechanics relations with intrinsic parameters?
 - Consistent results across scales
 - Can we develop in situ measurement/estimation procedures for parameter estimation?
 - Can we develop lab test devices/procedures for measurement at low normal stress?

Mii

Classical Model Limitations

• Terramechanics developed in context of large vehicles, for design trade space analysis

- Would like to apply to smaller, lighter systems, for dynamic sim

• Key limitations

- Effect of terrain inhomogeneity
 - Soil condition dependence
 - Layering, relative density, moisture content
- Scale effects
 - Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
 - Slip ratio definition
 - Rate dependence

|||ii

Slipping and Sinking (1)

- Terramechanics models are not rate dependent
- Studies on large wheels show that at higher velocity^{1,2}:
 - Sinkage decreases
 - Traction improves

• Experiments³ on small wheels have suggested little influence

1. Shmulevic I. et al./Journal of Terramechanics 35,1998, 189-207

- 2. Pope R.G./ Journal of Terramechancis 8(1), 1971, 51-58
- 3. Ding L. et al./Journal of Terramechanics 48, 2011, 27-45

Slipping and Sinking (1)

- Experiments with MER wheels have shown significant velocity effect
 - Plot of thrust force vs. vertical wheel load

 Vertical array of same-color data points: slip increasing top to bottom (83 %, 92 %, 98 %)

Slipping and Sinking (1)

- Experiments with MER wheels have shown significant velocity effect
 - Resistance from blocked RF wheel vs wheel load and drag velocity

|||ii

Slipping and Sinking (2)

- Terramechanics theory is not well suited for modeling motion with high slippage
 - No model of material transport
 - No temporal dependence

Opportunity Maneuvers out of Sand Trap

Illii

Slipping and Sinking (3)

- Terramechanics theory is not well suited for modeling motion with high sinkage
 - Compaction resistance vs. bulldozing
 - "Flattening" soil vs. "shoving" soil

$$F_x = bR \int_{\theta_b}^{\theta_e} \tau_x(\theta) \cos(\theta) - \sigma_n(\theta) \sin(\theta) d\theta$$

$$\sigma_n = \left(\frac{k_c}{b} + k_\phi\right) z^n$$

 σ_n

l'Ilii

Slipping and Sinking (4)

• Slip ratio defines relative velocity between wheel and soil

$$s_d = 1 - \frac{u}{\omega R}$$

- Dictates shear stress, deformation

l'lii

Slipping and Sinking (4)

- Problems with slip ratio
 - Undefined at zero angular velocity
 - Issue for simulation
 - Transition from positive to negative not handled by theory
 - Can occur during free rolling

$$s_d = 1 - \frac{u}{\omega R}$$

141ii

Slipping and Sinking (4)

- Problems with slip ratio
 - Undefined at zero angular velocity
 - Issue for simulation
 - Transition from positive to negative not handled by theory
 - Can occur during free rolling

 $s_d = 1 - \frac{u}{\omega R}$

Illii

Slipping and Sinking

- Questions (Solutions?)
 - How to model rate dependence?
 - Effect on motion resistance, thrust
 - Momentum formulation of terramechanics relations?
 - How to model temporal effects?
 - Effect on sinkage
 - Model material transport based on grouser geometry?
 - For some soils? All?
 - How to model motion resistance due to high sinkage?
 - Piecewise formulation?
 - "Unified" model of wheel slip?
 - Analysis of particle motion under wheels

Illii

Conclusions

- Fundamental limitations of terramechanics modeling
 - Effect of terrain inhomogeneity
 - Soil condition dependence
 - Layering, relative density, moisture content
 - Scale effects
 - Parameter scale dependence (non-intrinsic soil properties)
 - Effects related to slipping and sinking
 - Slip ratio definition
 - Rate dependence
- Issues affect computation, simulation
- Tradeoff between generality and accuracy
- Tradeoff between measurement burden and accuracy