University of Southern California

Soil Mechanics: Limitations
and Future Directions

Amy Rechenmacher

Dept. Civil and Environmental Engineering
University of Southern California

Keck Institute for Space Studies, xTerramechanics Workshop, Caltech, June 20-24, 2011



University of Southern California

Example of disconnect between
granular physics and geomechanics

Excerpt from an email from a colleague (Applied
Mathematician) regarding a joint paper on dense
granular flows:

“The reason for going for a high visibility physics
journal is to ensure the physicists see your work.
Some in that community have a terrible habit of
1gnoring papers in geomechanics...”
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Outline

» Definitions and characterizations

» Solil strength, components of friction
» Effect of “state™: critical state

* Current limitations in Soil Mechanics
* Future Directions
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Background: About me...

 BS, MS, PhD in Civil Engineering
« Worked in geotechnical practice 3 yrs b/w MS and PhD

« PhD research: experimental study of strain localization
and critical state soil mechanics

« Current research:
— Experimental imaging methods

— Granular mechanics/
granular physics

— Non-affine deformation
in dense granular flows
(force chains and
vortices)

— Geophysics:
fault gouge




Soils: Classification by Grain Size

FINE-GRAINED SOILS | COARSE-GRAINED SOILS

(physically/chemically | (not reactive with water)
reactive with water)

Log
| increasing
|~ particle
1000 size (mm)

BOULDER

S
Cd

3794909

Rounded Subrounded

COHESIVE | COHESIONLESS

(chemically | (not chemically
charged) | charged)

Subangular Angular

Keck Institute for Space Studies, xTerramechanics Workshop, Caltech, June 20-24, 2011




Effective Stress Concept
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Soil Strength:

Mohr-Coulomb Strength Criterion
K
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Components of Friction, ¢’
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Factors affecting ¢' in sands

* Grain size distribution
— Well-graded (poorly sorted) sands “stronger”

« Grain shape
— Angular grains more interlocking

» Grain Minearology

» Soil “state”
— State = density and confining pressure
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Effect of state: effect of density (e =V /V)

Observations:

* Dense sands (low e)
“stronger”: more energy
required to dilate

 Dense sands soften

 All specimens approach
a “Critical State” (CS)
= state of shearing at
constant stress and
volume

» Both sands approach
(0) (d) - SAME e at CS

o

Volume
increase

Volume
decrease
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Effect of state: effect of
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Effects of State: State Diagram
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e CSL = critical state line:

— Locus of final states of shearing at constant stress
and volume to which all states approach during shear

— Locus of initial states for which ¢, = 0 during shear
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Critical State Concept

» Used as a framework for prediction
» CSL position unigue for a given sand

» CSL position depends on:

— Particle shape
— Grain size and grain size distribution
— Mode of shearing

* In practice, determination of CSL position
very difficult (mainly due to strain localization)
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Current limitations in Soil Mechanics

 Conventional test methods

» Geotechnical community’s preference
toward empirical methods

* Progressive failure
» Strain localization

* Soil behavior prediction is a multiscale
problem
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Limitation 1: traditional soll testing

« Axisymmetric most popular S

— Not a realistic failure mode

— Strength, critical state dependent
on mode of shearing

* Boundary effects/interference

— Soil/platen friction: non-uniform soil response
— Membrane effects

— Difficulty mimicking field boundary condition

* Behavior quantified from boundary

measurements (only adequate for diffuse
deformation)

Keck Institute for Space Studies, xTerramechanics Workshop, Caltech, June 20-24, 2011




Limitation 2: Empirical methods

(motivated largely by sample disturbance)
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Limitation 3: Progressive
failure (soil heterogeneity)

‘Needed: better

b bt understanding
of progression
of post-peak
" L i 14 response!
I Gudehus and
Nubel (2004)
C Y
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Limitation 4: Strain Localization

ZX-Ray Computed Tomography (CT)

* Shear bands form in most cases

* Can’t assess evolution to critical state
using conventional tests when shear
band present

* Scale v. small relative to specimen size:
hard to characterize behavior inside
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Future Work: Better physics-based
understanding

 Multi-scale models: link micro-, meso-, and
macro-scale responses

» Statistical Thermodynamics/Conservation
of Energy

» Advanced testing to characterize micro-
and meso-scale behavior
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Future Work: Advanced experimental

methods: uCT
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Future Work: Advanced experimental
e methods: DIC
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