Future of Army Terramechanics

Capabilities and Needs

John F. Peters

Senior Research Scientist ERDC-Vicksburg, GSL US Army Corps of Engineers August 3, 2011

US Army Corps of Engineers BUILDING STRONG_®

- Background on ERDC contribution to Army Terramechanics
- A little history
- Recent research efforts
- Thoughts on capabilities and limitations of computer simulation
- Concluding Remarks

- ERDC consists of seven laboratories located at four campuses
- Various field sites
- Two labs concentrating on mobility
 Mobility Systems (GSL-Vicksburg)
 CRREL (New Hampshire)

ERDC Mobility Research

- Dedicated mobility group since the 1950s
- Vehicle testing
- Mobility models (NRMM)
- Historically, mobility research performed by the WES and CRREL.
- Computer simulation taking on greater role

Historical Support to Apollo Program

VANE Computational Testbed

Ground/Surface Mesh

Support UGV design trades and performance evaluations

- Autonomy systems and algorithms for mobility/ navigation
- Sensors for robotic perception and localization
- Vehicle platforms and components
- Tactical behaviors
- Tactics, techniques, and procedures (TTPs)
- Vegetation Insertion **Objects Insertion** Meteorological Data Observed Data Scene Initialization Manager Vehicle Simulation No New **Environment Simulation** Multi-body Vehicle Dynamics Ground Vegetation & Sensor Models Model Position Model Autonomous & Orien Yes Navigation Ray Casting Model Model Vehicle Terrain Post Processing (customer) Interface Model Analysis Archive Playback Scoring **Sensor Simulation** Ideal Images Sensor Images & Scene State Sensor Models & Scene State

Scene Generation

Material Attributions

- Integrates high-fidelity models for environment, terrain, vehicles, and sensors
- Core product simulates geoenvironmental influences on sensor responses and UGV platform mobility

ANVEL - 'Face' of the VANE CTB

Features of ANVEL

- 3-D vehicle dynamics simulator designed for the VANE CTB
 - Pre-simulation planning and postprocessing visualization
- Uses the Open Dynamics Engine (ODE) for multi-body physics
 - Simulates all vehicle components except for the wheels and tracks
- Uses the Ground Contact Element (GCE) with the Vehicle
 Terrain Interface (VTI) model to simulate the interaction forces on wheels/tracks
 - Longitudinal and lateral traction, motion resistance, and sinkage

VANE CTB Terramechanics

- Emerging implementation for vehiclesoil relationships in vehicle dynamics software
 - Vehicle Terrain Interface (VTI) model
 - Nodal-based terramechanics for wheels and tracks
 - Ground Contact Element (GCE)

NASA Crawler Transporter Study

- Study to investigate crawlerway compatibility for Ares V Crawler Transporter concepts
 - Analytical assessment of four wheeled crawler concepts to replace aging tracked platform
 - Concepts have 80, 192, 224, and 528 pneumatic tires
 - High resolution model of most complex concept
 - Early application of GCE with VTI in ANVEL Software

DEM at ERDC

- (70s-80s)WES used Cundal's model for rock mechanics.
- (80s) Used home-grown codes (Palmerton)
- (90s-present) CRELL developed DEM for solving numerous application in Ice and Snow mechanics (Hopkins)
- (90s) Supported development of DDA (Shi)
- (90s-present) WES/ERDC developed granular mechanics research as extension to research on constitutive relationships on soils.

ERDC Large-Scale Computing DEM Work

The computational solution

• The discrete element method depends on high performance computing resources. • Discrete element models are fundamentally simple but display realistic *emergent* behavior.

• DEM is in its formative stages but with HPC support will become a powerful analysis tool

Simulation Details Non-Spherical Particles

 Rotation resistance derived from non-spherical particles fundamentally different from that derived from rotational resistance at contact.

Simulation Details Poly-Ellipsoid Particles

- Non-spherical particle readily implemented into any DEM code for ellipsoids.
- Peters, Hopkins, Kala and Wahl (2009), *Engineering Computations*

Recent Work by Hopkins

Ploy-ellipsoid particles

Polyhedral particles

Limitations and Research Needs

- Application of DEM has an inherent limitation caused by the linkage between time and spatial scales – the smaller the length the shorter the time that can be modeled.
- Better understanding of the convergence of the method.
 - Theory not available for DEM systems
 - Softening of particles gives limited advantage, increasing mass not at all
 - Centrifuge-style scaling must account for size effects

Principal Themes

1. You cannot compute what you do not resolve. *The Numerical Sage*

2. Numerical error appears as real physics but at the wrong scale.

The Particle Scale

Cutaway View of Discrete Element Simulation of Plowing in Soil

Calibration Issues and Convergence

New Directions: Nano-Scale Granular Media

Soil Mechanics in Space Science

- Must be careful applying soil mechanics derived from earth experience to other environments
 - Weathering (or lack thereof)
 - Lack of atmosphere
 - Surface charge
 - Initial condition
- DEM can make its greatest contribution in understanding space soil mechanics

Grain-scale Studies and Media Simulation (CRREL)

Concluding Remarks

- Suite of models needed
 - Small scales (DEM) to understand granular mechanics
 - Large scale (Anvil) for mission evaluation
- DEM can contribute to understanding engineering properties of materials we can't test

