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General Specifications and 
Resources
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Definition of “Small”
• Shift in launch cost

• Can launch to LEO or GEO as 
secondary spacecraft up to 300 kg

• Constellations fit many spacecraft 
in a single launch

• Shift in risk tolerance
• Shorter development times, 

reduced testing, and commercial 
or lower-TRL parts

• Redundancy in numbers for 
constellations

• Set cut-off at 180 kg per NASA’s 
Small Spacecraft Technology 
Program, but mass is really a 
proxy for other delimiters Surrey Satellite 

Technology US LLC 

ISIS

CubeSats (< 20 kg)
• Form factor constrained by deployer
• Limited by volume rather than mass
• Plug-and-play commercial parts available
• Traditionally high-risk “unclassified” 

missions with 3-7 year lifetimes

Micro/minisats (< 180 kg)
• No set form factor, just volume envelope
• Can be limited by either mass or volume
• Can accommodate more traditional 

space-qualified components with longer 
lifetimes (if they fit!)

Two classes of SmallSats
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Launch Opportunities Beyond LEO

Secondary launch to GEO or Transfer Orbit
• Three GTO launches on Spaceflight, Inc.’s 

schedule for 2018/191

• Uses EELV Secondary Payload 
Adapter (ESPA) ring

• Up to 300 kg, 1.15 m x 1 m x 1.25 m
• Com-sat manufacturer SSL advertises 6-8 

launches per year2

• Uses Payload Orbital Delivery System 
(PODS), 

• Up to 150 kg, 1 m x 1 m x 0.6 m
• Use own propellant or commercial kick 

stage to access deep space

Secondary launch with interplanetary 
mission or primary launch of constellation 
• Constraints are mission specific, 

depending on primary payload and 
launch vehicle

• Lowest cost option is currently to bring a 
commercial deployer CubeSat form 
factor

© 2018 California Institute of Technology. Government sponsorship acknowledged.Reference 6.1, 6.2
Image courtesy of Spaceflight Inc
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Performance Envelopes
Mass and Volume

3U 6U 12U Mid-ESPA ESPA

Total 
Mass

3.5-8 kg
Typical: 4 kg

12-17 kg
Typical: 14 kg

Typical: 25 kg 30-75 kg 150-180 kg

Payload 
Mass

1-4 kg
Typical: 2.5 kg

5-12 kg
Typical: 6 kg

11-13 kg
Typical: 12 kg

10-45 kg 10-85 kg

Payload 
Volume

1-2U
Typical: 1.5U

2.5-5U
Typical: 3U

Typical: 10U Typical: 64U Typical: 120U

Payload mass and volume be traded for spacecraft capability…
but you can’t have it all!

References 7.1 through 7.15
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Performance Envelopes
Power 

3U 6U 12U Mid-ESPA ESPA

Peak 
Power at 
1 AU

7-56 W
Typical: 30 W

42-112 W
Typical: 100 

W

100-250 W
Typical: 150 

W

100-250 W
Typical: 200 

W

400-6000 W
Typical: 500 

W

Payload 
LEO Orbit 
Average

2-12 W
Typical: 5 W

5-45 W
Typical: 25 W

Typical: 40 W Typical: 75 W Typical: 150 
W

Wide range depending on whether deployable arrays are used. State-of-the-art in 
deployable arrays come from MMA’s HaWK product line. 

References 7.1 through 7.15
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Performance Envelopes
Data

3U 6U 12U Mid-ESPA ESPA

Downlink 
from LEO

1-100 Mbps
Typical: 2 

Mbps

1-100 Mbps
Typical: 2 

Mbps

15-100 Mbps
Typical: 50 

Mbps

1-160 Mbps
Typical: 100 

Mbps

50-200 Mbps
Typical: 150 

Mbps

Data 
Volume

4-64 GB
Typical: 16 GB

4-64 GB
Typical: 16 GB

4-64 GB
Typical: 16 GB

32-128 GB
Typical: 64 GB

32-128 GB
Typical: 64 GB

Redun-
dancy

No No No Yes Yes

CubeSat avionics are typically single string and not rad-hard (< 10 krad total dose)

References 7.1 through 7.15
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Performance Envelopes
Pointing and Propulsion

3U 6U 12U Mid-ESPA ESPA

Pointing 
accuracy

.004o-10o

Typical: 1o

.004o-3o

Typical: 1o

.004o-.01o

Typical: .01o

.004o-.15o

Typical: .007o

.004o-.03o

Typical: .005o

Delta-V ~ 10 m/s ~ 40 m/s < 200 m/s < 1 km/s > 1 km/s

Again, can always trade payload for capability!

References 7.1 through 7.15
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Reliability and Cost

CubeSats can be reliable platforms for science missions – with time and money

Reference 11.1
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Subsystem-Specific Capabilities
ACDS, Propulsion, and Telecom
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ACDS for SmallSats

BCT XACT 0.015 Nms integrated ACDS
Volume: 10 cm x 10 cm x 5 cm (0.5U)

Used on ASTERIA and MarCO
Honeywell 12 Nms single reaction wheel

Volume 30 cm x 30 cm x 15 cm

BCT 8 Nms single reaction wheel
Volume 19 cm x 19 cm x 8 cm

Reaction wheel x 3

Star tracker

References 13.1, 13.2
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Propulsion for SmallSats
Chemical Cold Gas Electric Solar sails

Isp: 200 s – 250 s
Thrust: 0.1 N – 30 N

Isp: 65 s-70 s
Thrust: 10 mN – 10 N

Isp: 700 s – 3000 s
Thrust: very small

Thrust: ~mN

• Many high-heritage and 
reliable hydrazine systems 
used on large missions

• Hydrazine is generally a no-
go for secondary launches

• “Green” propellant options 
on the horizon

• Compact, simple, and most 
common option for 
CubeSats

• Low Isp compared to 
chemical options

• Mature technology for 
larger systems, but 
miniaturization in work

• Good choice for high ΔV 
applications and long-term 
station-keeping

• Demonstrated deployment 
from CubeSats (NanoSail, 
LightSail)

• Propulsion demonstrations 
on upcoming missions

• Still need propellant for 
steering

VACCO’s Lunar Flashlight 
green propulsion system

240 m/s ΔV for 14-kg CubeSat

VACCO’s MaRCO
propulsion system

30 m/s ΔV for 6U CubeSat

Phase4 Rider plasma 
system with 160 m/s  ΔV

for 12-kg CubeSat

LightSail 32 m2 solar sail

References 14.1 through 14.8
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Telecom for SmallSats

Iris CubeSat X-band DSN-compatible 
transponder + amplifier

4 W RF output, 35 W DC input, 1.2 kg, 0.5U

X/Ka-band Small Deep Space Transponder (SDST) 
Needs an amplifier, customizable to mission requirements

3.2 kg, 18 cm x 17 cm x 12 cm (~4U)

Reflectarray antenna on 
MarCO (6U, X-band, 8 
kbps from Mars) and 

ISARA (3U, Ka-band, 100 
Mbps from LEO)

0.5-m deployable 
Ka-band HGA on 

Raincube fit in 
1.5U volume

References 15.1 through 15.5
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The Current and Near-Future 
Landscape
Near-term proposals or launches of SmallSat science missions beyond LEO

© 2018 California Institute of Technology. Government sponsorship acknowledged. 16
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Mars Cube One (MarCO)

• Two CubeSats (A and B) launched with the InSight Mars lander

• First interplanetary CubeSats

• 6U form factor with Reflectarray antenna, IRIS radio, ~30 m/s ΔV

• Will monitor InSight’s landing and act as a communications relay

References 17.1, 17.2
17
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Hayabusa2

• Main spacecraft carried four tiny hopping rovers to asteroid Ryugu

• Rover-1A, Rover 1B, and Rover-2 
• ~1 kg, solar powered, equipped with cameras, thermometers, and 

accelerometers

• MASCOT
• ~10 kg, battery powered, equipped with camera, IR spectrometer, 

magnetometer, and radiometer

References 18.1, 18.2
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OMOTENASHI, JAXA

Lunar Flashlight, JPLNEAScout, JPL

BioSentinel, NASA Ames

LunaH-Map, ASU

Lunar 
IceCube, 

Morehead 
State 

University

SkyFire, Lockheed Martin

CuSP, SWRI
EQUULEUS, 

JAXA

ArgoMoon, ASI

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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Lunar Flashlight, JPLNEAScout, JPL
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Lunar 
IceCube, 

Morehead 
State 

University

SkyFire, Lockheed Martin

CuSP, SWRI
EQUULEUS, 

JAXA

ArgoMoon, ASI

NEA Scout, JPL
• Mission to fly by and image a small near-Earth asteroid, 

observing its shape, orbital characteristics, and surface 
properties

• Gather information to aid in future human exploration missions
• 6U CubeSat propelled by 85-m2 solar sail

© 2018 California Institute of Technology. Government sponsorship acknowledged.

References 20.1, 20.2
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BioSentinel, NASA Ames
• 6U CubeSat to study the growth and metabolic activity of 

organisms in deep space over 18-month mission lifetime
• First to study biological radiation effects beyond LEO in 40 years

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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Reference 22.1

LunaH-Map, ASU
• Low altitude fly-bys of the Lunar south pole to look for 

hydrogen deposits
• Low thrust ion propulsion for orbit insertion
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EQUULEUS, JAXA
• Fly to Earth-Moon Lagrange point to image Earth’s 

plasmasphere and measure dust environment in cis-Lunar 
region

• Will demonstrate trajectory guidance, navigation, and control 
techniques for a smallsat at Lagrange points
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Sun Radio Interferometer Space Experiment (SunRISE)

• Proposed to the NASA Small Explorer (SMEX) call 

• Constellation of six 6U CubeSats brought to near-GEO with rideshare

• Formation flying to form 10 km synthetic aperture

• Observe solar radio bursts that can’t be observed from the ground 
due to ionic absorption

Reference 24.1
24



© 2018 California Institute of Technology. Government sponsorship acknowledged.

Planetary Science Deep Space SmallSat Studies (PSDS3)

• 19 studies awarded to develop concepts 
that explore Venus, the Moon, asteroids, 
Mars, Jupiter, and Uranus

• Two CubeSat constellations
• Ross (formerly CAESAR): a dozen 12U CubeSats

each targeting a different Near-Earth asteroid

• Bi-sat Observations of the Lunar Atmosphere 
above Swirls (BOLAS): two 12U tethered 
CubeSats characterize lunar hydrogen cycle 
from both low and high altitude

References 25.1 through 25.4
25



The Far Future Landscape
Projections for the next 15 years
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• A look back…
• CubeSats and SmallSats have come 

a long way in the last 15 years
• Launches have been largely 

commercial or experimental
• However, great science is being 

done in LEO and the first steps 
beyond LEO have been taken

• A look forward!
• Many science missions beyond LEO 

just on the horizon
• Bigger launch vehicles more 

room for secondary payloads
• Stronger partnerships with 

government and commercial 
companies

• Value in distributed networks and 
constellations will be realized

Reference 27.1
27
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