AO telemetry & performance

Caution: Ground-based bias!

Vanessa Bailey Stanford Univ.

What AO telemetry can we save? DM Reconstructor

Poster plug: what does GPI do with AO telemetry?

What limits my contrast at #"? Target instrument improvements.

Queue observing: when to execute? How to optimize survey strategy?

Tangent: site characterization

- Regular AO telemetry = regular site monitoring (postprocessing required!!)
- Compare to observatory MASS, DIMM, etc.
- planning upgrades &/or new instruments (AO and seeing-limited)
- What datasets exist for other AO instruments and/or sites?

Sri Srinath - SPIE 2016 Adam Snyder - SPIE 2016

What AO telemetry do we actually save now?

- most AO data isn't saved!
 - data rate of 100MB to >1GB / minute for high-order systems
 - manually triggered sets. Few sec to a few min, a few times per target. Sparse sampling!
- lots of AO data is unprocessed!
 - pipelines, databases required but not often allocated resources
 - Design systems for simplified analysis? (eg: Fourier basis sets?)

What is the minimal AO data we need to save?

- Analyze system performance?
- Complement focal plane WFS?
- Complement data reduction?
- What cadence?
- Save everything? Realtime process?
- S/N & error tolerance?

• ?

ground vs. space?

How to use current systems?

- Reach specs on *current* systems
 - Develop AO telem pipelines & infrastructure
 - Identify factors limiting astrophysics, not WFE

- What can we test with existing systems?
- ??