Accessing the Subsurface Oceans of Icy Worlds Accessing the Subsurface Oceans of Icy Worlds

Accessing the Subsurface Oceans of Icy Worlds

October 9-12, 2017
California Institute of Technology - Pasadena, CA 91125

Christophe Sotin

Christophe Sotin


Jose Andrade

Jose Andrade


Tom Cwik

Tom Cwik


Louise Prockter (LPI)

Louise Prockter


Curt Niebur

Curt Niebur


Workshop Overview:

This KISS study is devoted to the question of accessing the subsurface oceans of icy worlds in order to explore these water oceans and to discover the presence of alien extant life. Two of those icy worlds, Europa and Enceladus, are believed to be the most likely places in the solar system where extraterrestrial life may be discovered. A third ocean world, Titan, has a deep water ocean and abundant organic material in its atmosphere, but it is not clear that the water ocean is in contact with the rocky interior, an interface that is believed to be favorable for the emergence of life.

The Galileo and Cassini missions have revealed the presence of global oceans under the icy crust of several moons of Jupiter and Saturn. Among those moons, Europa and Enceladus have their ocean in contact with the rocky core, providing an environment similar to the conditions existing on the terrestrial sea-floor where life has developed at hydrothermal vents. At Enceladus, the Cassini mission made several discoveries (nano particles of silica, H2 in the jets, large heat power dissipated at the South Pole, …) that point to the existence of hydrothermal activities at the ocean-rocky interface. Europa, a moon 6 times as large as Enceladus, will be scrutinized by two missions: the multi-flybys mission Clipper that will determine the thickness of its crust, and the Europa lander mission that will investigate its habitability potential. A following and most exciting step in the exploration of those moons is to explore their ocean.

Deep oceans are clearly not the easiest place to explore. Sending submarines into the ocean of either Europa or Enceladus requires getting access to the ocean. The goal of this workshop is to review the different technologies that have been developed and to define the technologies that are still required. Although Europa has got much attention on this topic, the study broadens its goal to Enceladus and other icy moons such as Titan where the ocean was once in contact with the rocky core and may still be.

During this workshop, the participants will:

  • specify the characteristics and capabilities of the system (e.g., communications to the surface/Earth, deployment to the surface, operations, …). For resources, we will start with a design that can deliver 500 kg on the surface and would provide 4 MMRTGs worth of electric and thermal power.
  • describe design options and technology for each capability (e.g., tether/wireless/etc. to the surface),
  • discuss the pros and cons of each of those options,
  • define the preferred option for each characteristic.

Schedule Coming Soon...

List of Workshop Participants Coming Soon...

Lodging for out-of-town attendees

There are a number of hotels (4 pages pdf, 143KB) that are close to the Caltech campus where we have a negotiated rate. (Please note that this negotiated rate does not guarantee you the lowest rate as there may be internet specials or AAA rates that may be better.)

Please note that with enough notice, you can reserve rooms for attendees at the Athenaeum, which has been recognized as a Platinum Club of America. Newly refurbished, it is conveniently located on the Caltech Campus. Contact Janet Seid if you would like to check the availability of this option.

Visa Requirements

For Visa requirement information and travel to the United States please visit the website of the U.S. Department of State.

Parking (for Visitors and for JPL Personnel)

For Visitors: From the Arroyo Parkway, turn right (east) on Del Mar Avenue. Proceed approximately one and a quarter miles. The Caltech campus will be on your right. Turn right (south) onto Michigan Avenue. Turn right into the outdoor parking lot and park in an unmarked spot. Buy a parking permit from the kiosks near the middle of the lot or request one ahead of time from KISS.

For JPL Personnel: JPLers may use their JPL hang tag for parking or request a special parking hangtag from the JPL parking office. Employees who do not have on-Lab parking privileges can obtain a hang tag created for this purpose from JPL parking coordinator Robert Kennedy (818-354-4586, Building 310-108B, 9/80 schedule). Please park in the outdoor parking lot located on Michigan Avenue in an unmarked spot.

Maps and General Information on Pasadena

Directions and Maps

Presentations will be posted here during the first week of the workshop. Coming Soon...